1.中山大学中法核工程与技术学院,广东 珠海 519082
2.中国核动力研究设计院核反应堆系统设计技术重点实验室,四川 成都 610213
LIANG Lichuang(lianglch5@mail2.sysu.edu.cn)
TIAN Jun(tianjunhd@163.com)
SU Dongchuan(sdc03@139.com)
LI Hui(757529786@qq.com)
[ "JIANG Naibin(jiangnb@mail.sysu.edu.cn)" ]
纸质出版日期:2024-03-25,
网络出版日期:2023-07-03,
收稿日期:2023-03-21,
录用日期:2023-04-07
扫 描 看 全 文
梁立创,田俊,苏东川等.运行工况下固态堆芯基体的高温力学响应[J].中山大学学报(自然科学版)(中英文),2024,63(02):95-107.
LIANG Lichuang,TIAN Jun,SU Dongchuan,et al.The high-temperature mechanical response of solid-state core monolith under operating condition[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(02):95-107.
梁立创,田俊,苏东川等.运行工况下固态堆芯基体的高温力学响应[J].中山大学学报(自然科学版)(中英文),2024,63(02):95-107. DOI: 10.13471/j.cnki.acta.snus.2023B010.
LIANG Lichuang,TIAN Jun,SU Dongchuan,et al.The high-temperature mechanical response of solid-state core monolith under operating condition[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(02):95-107. DOI: 10.13471/j.cnki.acta.snus.2023B010.
热管冷却反应堆是核反应堆电池的首选堆芯之一,热管堆固态堆芯高温膨胀的力学性能需要引起重视。为了获得热管冷却反应堆316H不锈钢基体在高温下的力学变化,以MegaPower作为分析对象,采用开源蒙特卡罗程序(OpenMC)和商用有限元计算软件ANSYS Mechanical,对反应堆满功率运行工况进行了热力耦合分析。结果表明:1)在满功率运行水平,堆芯基体会产生显著的温度集中和热应力集中,燃料和基体的峰值温度分别为1 023 K和970 K,基体的最大热应力为49.5 MPa;2)在高温蠕变的效应下,基体的应力会显著降低,应力分布趋于均匀;3)在堆芯运行过程中,基体等效总应变只有微小变化,而等效弹性应变的减少和等效蠕变应变的增加几乎是同步且等量进行的。
The mechanical properties of heat pipe-cooled reactor which is a preferred core for nuclear reactor batteries at high temperatures needs attention. Taking MegaPower as the object
a thermal-mechanical coupling calculation of the reactor under full power operation condition is carried out using the open source Monte Carlo program (OpenMC) and ANSYS mechanical. The results show: (1) The core monolith generates significant temperature and thermal stress concentration
with peak temperatures of 1 023 K for the fuel and 970 K for the monolith
and the highest thermal stress of 49.5 MPa for the monolith; (2) Because of the effect of high-temperature creep
the stress in the monolith decreases significantly
and the stress distribution tends to be uniform. (3) During the core operation
the total equivalent strain of the monolith changes slightly
while the reduction of the equivalent elastic strain and the increase of the equivalent creep strain is almost simultaneous and equal.
固态堆芯高温316H不锈钢蠕变
solid-state reactor corehigh temperature316H stainless steelcreep
ARAFAT Y, van WYK J, 2019. eVinci micro reactor[J]. Nuclear Plant Journal, 37(3):34-37.
BETTEN J, 2008. Creep mechanics[M]. Berlin:Springer.
CAI F, JI J M, JIANG Z Q, et al, 2018. Engineering fronts in 2018[J]. Engineering, 4(6): 748-753.
DU X, TAO Y, ZHENG Y, et al, 2021. Reactor core design of UPR-s: A nuclear reactor for silence thermoelectric system NUSTER[J]. Nucl Eng Des, 383(6): 111404.
ESPOSITO L, BONORA N, de VITA G, 2016. Creep modelling of 316H stainless steel over a wide range of stress[J]. Procedia Struct Integr, 2:927-933.
HORAK J A, SIKKA V K, RASKE D T, 1983. Mechanical properties and microstructures of types 304 and 316 stainless steel after long-term aging[R]. Clinton:Oak Ridge National Lab.
LIU L, LIU B, XIAO Y, et al, 2022. Preliminary thermal and mechanical analysis on the reactor core of a new heat pipe cooled reactor applied in the underwater environment[J]. Prog Nucl Energy, 150:104306.
MA Y, LIU M, XIE B, et al, 2021. Neutronic and thermal-mechanical coupling analyses in a solid-state reactor using Monte Carlo and finite element methods[J]. Ann Nucl Energy, 151: 107923.
MA Y, LIU M, YU H, et al, 2020. Neutronic/Thermal-Mechanical coupling in heat pipe cooled reactor[J]. Nucl Power Eng, 41(4): 191-196.
MC CLURE P R, POSTON D I, DASARI V R, et al, 2015. Design of megawatt power level heat pipe reactors[R]. Los Alamos, United States: Los Alamos National Lab (LANL): 29.
NAUMENKO K, ALTENBACH H, 2007. Modeling of creep for structural analysis[M]. Berlin, Heidelberg: Springer Science & Business Media.
NIMS, 1988. NRIMS creep data sheet No. 42[R]. Japan: National Institute for Materials Science:1.
QIU S Z, ZHANG Z Q, ZHANG Z P, et al, 2022. Study on thermal-hydraulic characteristics of ocean silent heat pipe cooled reactor[J]. At Energy Sci Technol, 56(6): 989-1004.
ROMANO P K, FORGET B, 2013. The OpenMC Monte Carlo particle transport code[J]. Ann Nucl Energy, 51: 274-281.
SIKKA V K, BOOKER B L P, BOOKER M K,et al, 1980. Tensile and creep data on type 316 stainless steel[R]. Clinton:Oak Ridge National Laboratory.
TANG S, LIU X, WANG C, et al,2022. Thermal-electrical coupling characteristic analysis of the heat pipe cooled reactor with static thermoelectric conversion[J]. Ann Nucl Energy, 168: 108870.
WHITTAKER M T, EVANS M, WILSHIRE B, 2012. Long-term creep data prediction for type 316H stainless steel[J]. Mater Sci Eng A, 552: 145-150.
YAN B H, WANG C, LI L G, 2020. The technology of micro heat pipe cooled reactor: A review[J]. Ann Nucl Energy, 135: 106948.
YU H, MA Y, ZHANG Z, et al, 2019. Initiation and development of heat pipe cooled reactor[J]. Nucl Power Eng, 40(4):1-8.
ZHU J H, BOERMAN D, PIATTI G, 1983. Strength of the AISI 316 stainless steel above 800℃[C]// Transactions of the 7th International Conference on Structural Mechanics in Reactor Technology. Chicago, IIIinois, USA Elsevier Science Publishing Company: 507-514.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构