1.中山大学土木工程学院,广东 珠海 519082
2.南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082
3.重庆建工第一市政工程有限责任公司,重庆 400020
戴北冰(1981年生),男;研究方向:岩土力学与工程;E-mail:daibb@mail.sysu.edu.cn
纸质出版日期:2023-11-25,
网络出版日期:2023-07-03,
收稿日期:2023-03-15,
录用日期:2023-04-30
扫 描 看 全 文
戴北冰,邓林杰,陈智刚.颗粒摩擦对散粒堆积体拱效应的影响[J].中山大学学报(自然科学版),2023,62(06):89-97.
DAI Beibing,DENG Linjie,CHEN Zhigang.The influence of inter-particle friction on the arching effect in granular heaps[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(06):89-97.
戴北冰,邓林杰,陈智刚.颗粒摩擦对散粒堆积体拱效应的影响[J].中山大学学报(自然科学版),2023,62(06):89-97. DOI: 10.13471/j.cnki.acta.snus.2023B009.
DAI Beibing,DENG Linjie,CHEN Zhigang.The influence of inter-particle friction on the arching effect in granular heaps[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(06):89-97. DOI: 10.13471/j.cnki.acta.snus.2023B009.
通过开展三维离散元数值模拟,研究了颗粒摩擦系数对散粒堆积体自然休止角、堆积体底部应力分布、堆积体内部接触力投影分布、强弱力链数量等宏细观特征的影响规律。研究表明:随颗粒摩擦系数的增大,自然休止角增大并逐步趋于一个饱和值,堆积体底部应力峰值位置则从堆积体底部中心逐渐往外迁移,堆积体底部中心接触力相对于底部峰值的减小程度逐步增加,应力凹陷现象与拱效应越明显;随着颗粒间摩擦系数增大,颗粒间接触力沿锥面方向投影的最大值方位(锥)角逐渐增大并趋于稳定,堆积体内部拱效应的优势发挥方位出现在偏离竖直轴15°~25°的方位。
In this study, 3D DEM simulations have been conducted to investigate the effect of inter-particle friction on the macro and micro properties of granular heaps such as the angle of repose, stress distribution at the bottom, distribution of projected contact force, and number of strong and weak force chains, etc. The results indicate that increasing the inter-particle friction coefficient leads to an increase in the angle of repose
which eventually reaches a stable value. Additionally
the peak stress at the bottom migrates from the center outward
and the degree of reduction in contact force at the bottom center relative to the peak value increases. This results in a more pronounced stress dip and arching effect. The orientation angle of the conical surface
along which the maximum projection of contact forces occurs
increases with the increasing inter-particle friction coefficient and eventually stabilizes. The preferential direction for the mobilization of arching effect is oriented at 15°~25° relative to the vertical direction.
颗粒堆积体离散单元法摩擦系数休止角拱效应
granular heapsdiscrete element methodfriction coefficientangle of reposearching effect
戴北冰,李天齐,杨峻,等,2022. 组构对自然休止角影响的试验研究[J]. 岩土力学, 43(4): 957-968.
戴北冰, 杨峻, 刘锋涛,等,2019. 散粒土自然堆积的宏细观特征与形成机制[J]. 岩土工程学报, 41(S2): 57-60.
贾海莉,王成华,李江洪, 2003. 关于土拱效应的几个问题[J].西南交通大学学报, 38(4): 398-402.
孙其诚,王光谦, 2008. 静态堆积颗粒中的力链分布[J].物理学报,57(8):4667-4674.
张炜,谈健君,张帅,等,2022. 基于颗粒物质力学的铁粉末压制中摩擦特性对力链演化影响[J]. 摩擦学学报,42(2):386-395.
BOUCHAUD J P, CLAUDIN P, CLÉMENT E, et al, 2002. The stress response function in granular materials[J]. Comptes Rendus Physique,3(2): 141-151.
CATES M E, WITTMER J P, BOUCHAUD J P, et al, 1999. Jamming and static stress transmission in granular materials[J]. Chaos, 9(3):511-522.
DAI B B, YANG J, ZHOU C Y, et al, 2017. Effect of particle shape on the formation of sandpile[C]// International Conference on Discrete Element Methods.Singapore:Springer.
DAI B B, 2018. Probing the boundary effect in granular piles[J]. Granul Matter, 20(1):5.
DAI B B, LI T Q, DENG L J, et al, 2022. Fabric effect on the angle of repose in granular materials[J]. Powder Technol, 400:117256.
FANG Y, LI X, GUO L, et al, 2022. The experiment and analysis of the repose angle and the stress archcaused stress dip of the sandpile[J]. Granul Matter,24(1): 621-628.
GENG J, LONGHI E, BEHRINGER R P, et al, 2001. Memory in 2D heap experiments[J]. Phys Rev E,64(6):060301.
GOLDENBERG C, GOLDHIRSCH I, 2005. Friction enhances elasticity in granular solids[J]. Nature, 435(7039):188-191.
HORABIK J, PARAFINIUK P, MOLENDA M, 2017. Discrete element modelling study of force distribution in a 3D pile of spherical particles[J]. Powder Technol, 312:194-203.
KARL T,1943. Theoretical soil mechanics[M]. Hoboken, NJ, USA: John Wiley & Sons.
MA X J, WU Z H, 2016. Breakup process and force chain evolution of particle aggregates in flow field[J]. Journal of South China University of Technology(Natural Science Edition),44(6): 6.
MAJMUDAR T S, BEHRINGER R P, 2005. Contact force measurements and stress-induced anisotropy in granular materials[J]. Nature, 435(7045):1079-1082.
MENG F, LIU K, QIN T, 2018. Numerical analysis of multi-scale mechanical theory of densified powder compaction[J]. J Braz Soc Mech Sci Eng, 40(9):430.
NEDDERMAN R M,1992. Statics and kinematics of granular materials[M]. Cambridge: Cambridge University Press.
SILBERT L E, GREST G S, LANDRY J W, 2002. Statistics of the contact network in frictional and frictionless granular packings[J]. Phys Rev E, 66(6):061303.
TERZAGHI K, 1936. Stress distribution in dry and in saturated sand above a yielding trapdoor[C]//The 1st International Conference on Soil Mechanics and Foundation Engineering.
WATSON A, 1996. Searching for the sand-pile pressure dip[J]. Science, 273(5275):579-580.
WITTMER J P, CLAUDIN P,CATES M E,et al, 1996. An explanation for the central stress minimum in sand piles[J]. Nature, 382(6589):336-338.
ZAIDI A A, 2020. Granular drag force during immersion in dry quicksand[J]. Powder Technol, 364: 986-993.
ZHAO H, AN X, DONG K, et al, 2019. Macro- and microscopic analyses of piles formed by platonic solids[J]. Chem Eng Sci, 205:391-400.
ZHOU C, OOI J Y, 2009. Numerical investigation of progressive development of granular pile with spherical and non-spherical particles[J]. Mech Mater, 41(6):707-714.
ZHU J, LIANG Y, ZHOU Y, 2013. The effect of the particle aspect ratio on the pressure at the bottom of sandpiles[J]. Powder Technol, 234:37-45.
ZURIGUEL I, MULLIN T, ROTTER J M, 2007. Effect of particle shape on the stress dip under a sandpile[J]. Phys Rev Lett, 98(2):028001.
ZURIGUEL I, MULLIN T, 2008. The role of particle shape on the stress distribution in a sandpile[J]. Proc R Soc A, 464(2089):99-116.
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构