重庆师范大学数学科学学院,重庆 401331
刘颖(1997年生),女;研究方向:偏微分方程反问题;E-mail:2417260937@qq.com
刘立汉(1987年生),男;研究方向:偏微分方程反问题;E-mail:20132130@cqnu.edu.cn
纸质出版日期:2024-05-25,
网络出版日期:2024-03-29,
收稿日期:2023-06-04,
录用日期:2023-12-23
扫 描 看 全 文
刘颖,刘立汉.基于分解法的Neumann边界条件反散射问题[J].中山大学学报(自然科学版)(中英文),2024,63(03):172-178.
LIU Ying,LIU Lihan.The factorization method for the inverse scattering problem with Neumann boundary conditions[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(03):172-178.
刘颖,刘立汉.基于分解法的Neumann边界条件反散射问题[J].中山大学学报(自然科学版)(中英文),2024,63(03):172-178. DOI: 10.13471/j.cnki.acta.snus.2023A046.
LIU Ying,LIU Lihan.The factorization method for the inverse scattering problem with Neumann boundary conditions[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(03):172-178. DOI: 10.13471/j.cnki.acta.snus.2023A046.
利用分解法研究Neumann边界条件下障碍物反散射问题和腔体反散射问题. 该方法利用近场测量数据可以同时处理障碍物反散射问题和腔体反散射问题,而不需要对测量面和散射体之间的距离做任何渐近假设. 首先给出两个反散射问题的数学模型,以及利用双层势能算子的跳跃关系和格林公式给出双层势能算子的相关估计结果. 其次通过定义算子分别研究障碍物和腔体近场算子的分解情况. 最后构造障碍物和腔体在Neumann边界条件下的成像函数.
The inverse scattering problem for obstacles and cavities with Neumann boundary conditions is studied by using the factorization method. The data from near-field measurements is used to deal with both inverse scattering for obstacles and cavities without making any asymptotic assumption about the distance between the measured surface and the scatterers. Firstly, mathematical model for the inverse scattering problem is given, and the results of the estimation of the double-layer operator are given by using the jump relation of the double-layer potential and Green's formula. Secondly, the decomposition of the near-field operators of obstacles and cavities is studied separately. Finally, the imaging function of obstacles and cavities under Neumann boundary conditions is constructed.
反散射近场测量分解法
inverse scatteringnear-field measurementsthe factorization method
CAKONI F, COLTON D, 2014. A qualitative approach to inverse scattering theory[M]. Boston: Springer.
CAKONI F, HADDAR H, LECHLEITER A, 2019. On the factorization method for a far field inverse scattering problem in the time domain[J]. SIAM J Math Anal, 51(2): 854-872.
CHEN J, CHEN Z, HUANG G, 2013. Reverse time migration for extended obstacles: Acoustic waves[J]. Inverse Probl, 29(8): 085005.
COLTON D, KIRSCH A,1996. A simple method for solving inverse scattering problems in the resonance region[J]. Inverse Probl, 12(4): 383-393.
COLTON D, KRESS R, 2013. Inverse acoustic and electromagnetic scattering theory[M]. New York: Springer.
HADDAR H, KONSCHIN A, 2020. Factorization method for imaging a local perturbation in inhomogeneous periodic layers from far field measurements[J]. Inverse Probl Imag, 14(1): 133-152.
HARRIS I, NGUYEN D L, 2020. Orthogonality sampling method for the electromagnetic inverse scattering problem[J]. SIAM J Sci Comput, 42(3): B722-B737.
HU Y, CAKONI F, LIU J, 2014. The inverse scattering problem for a partially coated cavity with interior measurements[J]. Appl Anal, 93(5): 936-956.
ITO K, JIN B, ZOU J, 2012. A direct sampling method to an inverse medium scattering problem[J]. Inverse Probl, 28(2): 025003.
KIRSCH A, 1998. Characterization of the shape of a scattering obstacle using the spectral data of the far field operator[J]. Inverse Probl, 14(6): 1489-1512.
KIRSCH A, 1999. Factorization of the far-field operator for the inhomogeneous medium case and an application in inverse scattering theory[J]. Inverse Probl, 15(2): 413-429.
KIRSCH A, GRINBERG N, 2007. The factorization method for inverse problems[M]. Oxford: Oxford University Press.
LEEM K H, LIU J, PELEKANOS G, 2018. Two direct factorization methods for inverse scattering problems[J]. Inverse Probl, 34(12): 125004.
LIU X D, MENG S X, ZHANG B, 2022. Modified sampling method with near field measurements[J]. SIAM J Appl Math, 82(1): 244-266.
McLEAN W, 2000. Strongly elliptic systems and boundary integral equations[M]. Cambridge: Cambridge University Press.
QIN H H, COLTON D, 2012a. The inverse scattering problem for cavities with impedance boundary condition[J]. Adv Comput Math, 36(2): 157-174.
QIN H H, COLTON D, 2012b. The inverse scattering problem for cavities[J]. Appl Numer Math, 62(6): 699-708.
ZHANG B, ZHANG H, 2020. An approximate factorization method for inverse acoustic scattering with phaseless total-field data[J]. SIAM J Appl Math, 80(5): 2271-2298.
0
浏览量
14
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构