西安交通大学数学与统计学院,陕西 西安 710049
杨在(1986年生),男;研究方向:信息处理与无线通信的数学理论与方法;E-mail:yangzai@xjtu.edu.cn
纸质出版日期:2023-09-25,
网络出版日期:2023-08-30,
收稿日期:2023-05-29,
录用日期:2023-06-21
扫 描 看 全 文
杨在,吴训蒙,徐宗本.谱压缩感知的非凸低秩矩阵优化模型与方法综述[J].中山大学学报(自然科学版),2023,62(05):50-58.
YANG Zai,WU Xunmeng,XU Zongben.Nonconvex low-rank matrix recovery models and methods for spectral compressed sensing: An overview[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(05):50-58.
杨在,吴训蒙,徐宗本.谱压缩感知的非凸低秩矩阵优化模型与方法综述[J].中山大学学报(自然科学版),2023,62(05):50-58. DOI: 10.13471/j.cnki.acta.snus.2023A040.
YANG Zai,WU Xunmeng,XU Zongben.Nonconvex low-rank matrix recovery models and methods for spectral compressed sensing: An overview[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(05):50-58. DOI: 10.13471/j.cnki.acta.snus.2023A040.
谱压缩感知研究有限样本下谱稀疏信号及其连续频率参数的恢复问题,是经典的信号频谱分析问题的拓展,在阵列与雷达信号处理和无线通信等信息技术领域中有着广泛应用. 谱压缩感知的经典方法和本世纪诞生的凸松弛方法由于适用范围、估计精度或算法速度的制约,无法满足当下5G和未来6G无线通信等技术对于高精度、高速度的迫切需求. 近期,一系列基于结构低秩矩阵的非凸优化模型被提出,这些模型通过精确刻画谱稀疏信号的几何结构,将具有严重非凸性的原参数域优化问题等价刻画为信号域中的结构低秩矩阵恢复问题,为谱压缩感知问题提供了全新的求解思路,带来了算法精度的本质提升. 本文系统性地综述了已有关于单通道、多通道和恒模这三类常见谱稀疏信号的结构低秩矩阵恢复模型和求解算法,分析了这些模型的共同点和差异性,并对未来可能的研究方向进行了展望.
Spectral compressed sensing refers to the problem of recovering spectral-sparse signals and their continuous-valued frequency parameters from limited samples. It is an extension of the classical spectral analysis problem of signals and widely used in information technology fields such as array and radar signal processing and wireless communications. The classical methods for spectral compressed sensing and the convex relaxation methods of this century have limits in the scope of application, estimation accuracy or algorithm speed, which cannot satisfy the urgent demands for high accuracy and speed in technologies such as current 5G and future 6G wireless communications. Recently, a series of nonconvex optimization models based on structured low-rank matrices have been proposed. By characterizing the geometric structures of spectral sparse signals, the original highly non-convex optimization problem in the parameter domain is cast as a structured low-rank matrix recovery problem in the signal domain, which provides a novel solution for the spectral compressed sensing problem and brings a substantial improvement in the algorithm accuracy. In this paper, we systematically review the existing structured low-rank matrix recovery models and algorithms for three types of spectral sparse signals: single-channel, multichannel, and constant modulus, analyze commonalities and differences of these models; and point out possible future research directions.
谱压缩感知频谱分析结构低秩矩阵恢复非凸优化
spectral compressed sensingspectral analysis of signalsstructured low-rank matrix recoverynonconvex optimization
ANDERSSON F, CARLSSON M, TOURNERET J Y, et al, 2014. A new frequency estimation method for equally and unequally spaced data[J]. IEEE Trans Signal Process, 62(21): 5761-5774.
BOYD S, PARIKH N, CHU E, et al, 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Found Trends Mach Learn, 3(1): 1-122.
CANDÈS E J, FERNANDEZ‐GRANDA C, 2013. Super-resolution from noisy data[J]. J Fourier Anal Appl, 19(6): 1229-1254.
CANDÈS E J, FERNANDEZ‐GRANDA C, 2014. Towards a mathematical theory of super‐resolution[J]. Commun Pure Appl Math, 67(6): 906-956.
DAX A, 2014. Low-rank positive approximants of symmetric matrices[J]. Adv Linear Algebra Matrix Theory, 4(3): 172-185.
DONGARRA J, SULLIVAN F, 2000. Guest editors introduction to the top 10 algorithms[J]. Comput Sci Eng, 2(1): 22–23.
DUARTE M F, BARANIUK R G, 2013. Spectral compressive sensing[J], Appl Comput Harmon Anal, 35(1):111-129.
FEDER M, WEINSTEIN E, 1988. Parameter estimation of superimposed signals using the EM algorithm[J]. IEEE Trans Acoust Speech Signal Process, 36(4): 477-489.
GARCIA N, WYMEERSCH H, LARSSON E G, et al, 2017. Direct localization for massive MIMO[J]. IEEE Trans Signal Process, 65(10): 2475-2487.
HALKO N, MARTINSSON P G, TROPP J A, 2011. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions[J]. SIAM Rev, 53(2): 217-288.
KRIM H, VIBERG M, 1996. Two decades of array signal processing research: The parametric approach[J]. IEEE Signal Process Mag, 13(4): 67-94.
LESHEM A, van der VEEN A J, 1999. Direction-of-arrival estimation for constant modulus signals[J]. IEEE Trans Signal Process, 47(11): 3125-3129.
LESHEM A, 2000. Maximum likelihood separation of constant modulus signals[J]. IEEE Trans Signal Process, 48(10): 2948-2952.
LIU F, ZHOU L, MASOUROS C, et al, 2018. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Trans Signal Process, 66(16): 4264-4279.
MORGENSHTERN V I, CANDÈS E J, 2016. Super-resolution of positive sources: The discrete setup[J]. SIAM J Imaging Sci, 9(1): 412-444.
PAULRAJ A, ROY R, KAILATH T, 1986. A subspace rotation approach to signal parameter estimation[J]. Proc IEEE, 74(7): 1044-1046.
SCHMIDT R, 1986. Multiple emitter location and signal parameter estimation[J]. IEEE Trans Antennas Propag, 34(3): 276-280.
STARER D, NEHORAI A, 1992. Newton algorithms for conditional and unconditional maximum likelihood estimation of the parameters of exponential signals in noise[J]. IEEE Trans Signal Process, 40(6): 1528-1534.
STOICA P, BESSON O, 2000. Maximum likelihood DOA estimation for constant-modulus signal[J]. Electron Lett, 36(9): 849-851.
STOICA P, MOSES R, 2005. Spectral analysis of signals[M]. New Jersey: Prentice Hall.
STOICA P, NEHORAI A, 1989. MUSIC, maximum likelihood, and Cramer-Rao bound[J]. IEEE Trans Acoust Speech Signal Process, 37(5): 720-741.
TANG G, BHASKAR B N, SHAH P, et al, 2013. Compressed sensing off the grid[J]. IEEE Trans Inf Theory, 59(11):7465-7490.
van der VEEN A J, PAULRAJ A, 1996. An analytical constant modulus algorithm[J]. IEEE Trans Signal Process, 44(5): 1136-1155.
WANG Y, TIAN Z, 2018. IVDST: A fast algorithm for atomic norm minimization in line spectral estimation[J]. IEEE Signal Process Lett, 25(11): 1715-1719.
WAX M, 1992. On unique localization of constrained-signals sources[J]. IEEE Trans Signal Process, 40(6): 1542-1547.
WILLIAMS D B, JOHNSON D H, 1992. On resolving <math id="M225"><mn mathvariant="normal">2</mn><mi>M</mi><mo>-</mo><mn mathvariant="normal">1</mn></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49666484&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49666483&type=9.567333222.28600001 narrow-band signals with an <math id="M226"><mi>M</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49666486&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49666485&type=2.624666692.28600001 sensor uniform linear array[J]. IEEE Trans Signal Process, 40(3): 707-711.
WU X, YANG Z, STOICA P, et al, 2022a. Maximum likelihood line spectral estimation in the signal domain: A rank-constrained structured matrix recovery approach[J]. IEEE Trans Signal Process, 70: 4156-4169.
WU X, YANG Z, WEI Z, et al, 2022b. Direction-of-arrival estimation for constant modulus signals using a structured matrix recovery technique[EB/OL]. http://arxiv.org/abs/2307.07806http://arxiv.org/abs/2307.07806.
WU X, YANG Z, XU Z, 2023. Multichannel frequency estimation in challenging scenarios via structured matrix embedding and recovery (StruMER)[EB/OL]. http://arxiv.org/abs/2307.07802http://arxiv.org/abs/2307.07802.
YANG Z, LI J, STOICA P, et al, 2018. Sparse methods for direction-of-arrival estimation[M]//CHELLAPPA R,et al, ed. Academic Press Library in Signal Processing, Volume 7: Array, Radar and Communications Engineering. London:Academic Press: 509-581.
YANG Z, WU X M, XU Z B, 2023. New low rank optimization model and algorithms for spectral compressed sensing[EB/OL]. https://www.sciengine.com/SCM/doi/10.1007/s11425-021-2151-0https://www.sciengine.com/SCM/doi/10.1007/s11425-021-2151-0.
YANG Z, XIE L, 2016. Exact joint sparse frequency recovery via optimization methods[J]. IEEE Trans Signal Process, 64(19): 5145-5157.
ZHANG Y, WANG Y, TIAN Z, et al, 2022. Efficient super-resolution two-dimensional harmonic retrieval with multiple measurement vectors[J]. IEEE Trans Signal Process, 70: 1224-1240.
0
浏览量
10
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构