School of Data Science, Fudan University, Shanghai 200433,China
ZHANG Zhiyuan(zhiyuanzhang20@fudan.edu.cn)
ZHU Xuening(xueningzhu@fudan.edu.cn)
纸质出版日期:2023-09-25,
网络出版日期:2023-08-30,
收稿日期:2023-04-04,
录用日期:2023-04-11
扫 描 看 全 文
.· 前沿聚焦: 优化技术与应用专栏 ·[J].中山大学学报(自然科学版),2023,62(05):24-37.
ZHANG Zhiyuan,ZHU Xuening.Network autoregression model with grouped factor structures[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(05):24-37.
.· 前沿聚焦: 优化技术与应用专栏 ·[J].中山大学学报(自然科学版),2023,62(05):24-37. DOI: 10.13471/j.cnki.acta.snus.2023A027.
ZHANG Zhiyuan,ZHU Xuening.Network autoregression model with grouped factor structures[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(05):24-37. DOI: 10.13471/j.cnki.acta.snus.2023A027.
Network autoregression and factor model are effective methods for modeling network time series data. In this study
we propose a network autoregression model with a factor structure that incorporates a latent group structure to address nodal heterogeneity within the network. An iterative algorithm is employed to minimize a least-squares objective function
allowing for simultaneous estimation of both the parameters and the group structure. To determine the unknown number of groups and factors
a PIC criterion is introduced. Additionally
statistical inference of the estimated parameters is presented. To assess the validity of the proposed estimation and inference procedures
we conduct extensive numerical studies. We also demonstrate the utility of our model using a stock dataset obtained from the Chinese A-Share stock market.
network autoregressionfactor structureheterogeneitylatent group structurenetwork time series
ALESSI L, BARIGOZZI M, CAPASSO M, 2010. Improved penalization for determining the number of factors in approximate factor models[J]. Stat Probab Lett, 80(23/24): 1806-1813.
ANDO T, BAI J, 2017. Clustering huge number of financial time series: A panel data approach with high-dimensional predictors and factor structures[J]. J Amer Stat Assoc, 112(519): 1182-1198.
BAI J, 2003. Inferential theory for factor models of large dimensions[J]. Econometrica, 71(1): 135-171.
BAI J, 2009. Panel data models with interactive fixed effects[J]. Econometrica, 77(4): 1229-1279.
BAI J, NG S, 2002. Determining the number of factors in approximate factor models[J]. Econometrica, 70(1): 191-221.
CHAN L K C, KARCESKI J, LAKONISHOK J, 1998. The risk and return from factors[J]. J Financial Quant Anal, 33(2): 159-188.
CHAN L K C, KARCESKI J, LAKONISHOK J, 1999. On portfolio optimization: Forecasting covariances and choosing the risk model[J]. Rev Financ Stud, 12(5): 937-974.
CLAUSET A, SHALIZI C R, NEWMAN M E J, 2009. Power-law distributions in empirical data[J]. SIAM Rev, 51(4): 661-703.
FAMA E F, FRENCH K R, 1993. Common risk factors in the returns on stocks and bonds[J]. J Financial Econ, 33(1): 3-56.
FAN J, LIAO Y, MINCHEVA M, 2011. High dimensional covariance matrix estimation in approximate factor models[J]. Ann Stat, 39(6): 3320-3356.
FAN X, LAN W, ZOU T, et al, 2022. Covariance model with general linear structure and divergent parameters[J]. J Bus Econ Stat: 1-13.
HALLIN M, LIŠKA R, 2007. Determining the number of factors in the general dynamic factor model[J]. J Amer Stat Assoc, 102(478): 603-617.
HOU K, XUE C, ZHANG L, 2015. A comparison of new factor models[R/OL]. Fisher College of Business Working Paper, (2017-04-19)[2023-04-13]. https://dx.doi.org/10.2139/ssrn.2520929https://dx.doi.org/10.2139/ssrn.2520929.
LEWIS K, KAUFMAN J, GONZALEZ M, et al, 2008. Tastes, ties, and time: A new social network dataset using Facebook.com[J]. Soc Netw, 30(4): 330-342.
LIN C C, NG S, 2012. Estimation of panel data models with parameter heterogeneity when group membership is unknown[J]. J Econom Methods, 1(1): 42-55.
LIU R, SHANG Z, ZHANG Y, et al, 2020. Identification and estimation in panel models with overspecified number of groups[J]. J Econom, 215(2): 574-590.
MATTHEWS K, 2013. Risk management and managerial efficiency in Chinese banks: A network DEA framework[J]. Omega, 41(2): 207-215.
STOCK J H, WATSON M W, 2011. Dynamic factor models[D]. Cambridge: Harvard University.
ZHU X, PAN R, LI G, et al, 2017. Network vector autoregression[J]. Ann Stat, 45(3): 1096-1123.
ZHU X, XU G, FAN J, 2022. Simultaneous estimation and group identification for network vector autoregressive model with heterogeneous nodes[EB/OL]. arXiv:2209.12229, (2022-09-25)[2023-04-13]. https://arxiv.org/abs/2209.12229https://arxiv.org/abs/2209.12229.
ZOU T, LAN W, WANG H, et al, 2017. Covariance regression analysis[J]. J Amer Stat Assoc, 112(517): 266-281.
0
浏览量
10
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构