1.太原理工大学数学学院, 山西 太原 030024
2.中山大学数学学院, 广东 广州 510275
吕婷(1999年生),女;研究方向:分数阶随机微分方程;E-mail:lvting1026@link.tyut.edu.cn
杨敏(1986年生),男;研究方向:泛函微分方程理论及其应用;E-mail:yangm58@mail2.sysu.edu.cn
纸质出版日期:2024-01-25,
网络出版日期:2023-11-15,
收稿日期:2023-01-16,
录用日期:2023-03-22
扫 描 看 全 文
吕婷,杨敏,王其如.Hilfer分数阶脉冲随机发展方程的平均原理[J].中山大学学报(自然科学版)(中英文),2024,63(01):145-153.
LÜ Ting,YANG Min,WANG Qiru.Averaging principle for Hilfer fractional impulsive stochastic evolution equations[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(01):145-153.
吕婷,杨敏,王其如.Hilfer分数阶脉冲随机发展方程的平均原理[J].中山大学学报(自然科学版)(中英文),2024,63(01):145-153. DOI: 10.13471/j.cnki.acta.snus.2023A006.
LÜ Ting,YANG Min,WANG Qiru.Averaging principle for Hilfer fractional impulsive stochastic evolution equations[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(01):145-153. DOI: 10.13471/j.cnki.acta.snus.2023A006.
利用分数阶微积分理论、半群性质、不等式技巧和随机分析理论,建立了分数布朗运动驱动的Hilfer分数阶脉冲随机发展方程的平均原理,证明了原方程的适度解均方收敛于无脉冲平均方程的适度解,并通过实例说明了所得理论结果的适用性.
By using fractional calculus, semigroup theories, inequality techniques and stochastic analysis theories, an averaging principle for Hilfer fractional impulsive stochastic evolution equations driven by fractional Brownian motion is established. The mild solution of the original equations converges to the mild solution of the reduced averaged equations without impulses in the mean square sense is proved. And an example is presented to illustrate the applicability of our obtained theoretical results.
平均原理Hilfer分数阶导数脉冲随机发展方程分数布朗运动
averaging principleHilfer fractional derivativeimpulsive stochastic evolution equationsfractional Brownian motion
刘健康,王进斌,徐伟,2023. Caputo分数阶中立型微分方程的随机平均原理[J]. 山西大学学报(自然科学版),46(2):304-308.
ABOUAGWA M,BANTAN R A R,ALMUTIRY W,et al,2021. Mixed Caputo fractional neutral stochastic differential equations with impulses and variable delay[J]. Fractal Fract,5(4):239.
AHMED H M,EL-BORAI M M,EL-OWAIDY H M,et al,2018. Impulsive Hilfer fractional differential equations[J]. Adv Differ Equ,2018(1):1-20.
AHMED H M, ZHU Q, 2021. The averaging principle of Hilfer fractional stochastic delay differential equations with Poisson jumps[J]. Appl Math Lett, 112: 106755.
BOLLERSLEV T, OLE MIKKELSEN H, 1996. Modeling and pricing long memory in stock market volatility[J]. J Econom, 73(1): 151-184.
BOUDRAHEM S, ROUGIER P R, 2009. Relation between postural control assessment with eyes open and centre of pressure visual feedback effects in healthy individuals[J]. Exp Brain Res, 195(1): 145-152.
CERRAI S, FREIDLIN M, 2009. Averaging principle for a class of stochastic reaction-diffusion equations[J]. Probab Theory Relat Fields, 144(1): 137-177.
CUI J, BI N, 2020. Averaging principle for neutral stochastic functional differential equations with impulses and non-Lipschitz coefficients[J]. Stat Probab Lett, 163: 108775.
de la FUENTE I M, PEREZ-SAMARTIN A L, MARTÍNEZ L, et al, 2006. Long-range correlations in rabbit brain neural activity[J]. Ann Biomed Eng, 34(2): 295-299.
GU H, TRUJILLO J J, 2015. Existence of mild solution for evolution equation with Hilfer fractional derivative[J]. Appl Math Comput, 257: 344-354.
KOLMOGOROV A N,1940.The Wiener spiral and some other interesting curves in Hilbert space[J]. Dokl Akad Nauk SSSR, 26(2):115-118.
LELAND W E, TAQQU M S, WILLINGER W, et al, 1994. On the self-similar nature of Ethernet traffic (extended version)[J]. IEEE/ACM Trans Netw, 2(1): 1-15.
LIU B D,2007. Uncertainty theory[M]. 2nd ed. Berlin:Springer-Verlag.
LIU J,WEI W,XU W,2022a. An averaging principle for stochastic fractional differential equations driven by fBm involving impulses[J]. Fractal Fract,6(5):256.
LIU J,XU W,GUO Q,2020. Global attractiveness and exponential stability for impulsive fractional neutral stochastic evolution equations driven by fBm[J]. Adv Differ Equ:1-17.
LIU J,XU W,GUO Q,2022b. Averaging of neutral stochastic partial functional differential equations involving delayed impulses[J]. Appl Anal,101(18):6435-6450.
LUO D, ZHU Q, LUO Z, 2021. A novel result on averaging principle of stochastic Hilfer-type fractional system involving non-Lipschitz coefficients[J]. Appl Math Lett, 122: 107549.
MA S, KANG Y, 2019. Periodic averaging method for impulsive stochastic differential equations with Lévy noise[J]. Appl Math Lett, 93: 91-97.
MANDELBROT B B, van NESS J W, 1968. Fractional Brownian motions, fractional noises and applications[J]. SIAM Rev, 10(4): 422-437.
REN Y, CHENG X, SAKTHIVEL R, 2014. Impulsive neutral stochastic functional integro-differential equations with infinite delay driven by fBm[J]. Appl Math Comput, 247: 205-212.
SAKTHIVEL R, REVATHI P, REN Y, 2013. Existence of solutions for nonlinear fractional stochastic differential equations[J]. Nonlinear Anal Theory Methods Appl, 81: 70-86.
SHENG W J,GU H B,SUN H X,2022. The averaging principle for Hilfer fractional stochastic differential equations driven by time-changed Lévy noise[J]. J Nonlinear Funct Anal:1-15.
WANG P G,XU Y,2020. Periodic averaging principle for neutral stochastic delay differential equations with impulses[J]. Complexity,2020:6731091.
XU W J, XU W, 2020. An averaging principle for the time-dependent abstract stochastic evolution equations with infinite delay and Wiener process[J].J Stat Phys, 178(5): 1126-1141.
XU Y,DUAN J,XU W,2011. An averaging principle for stochastic dynamical systems with Lévy noise[J]. Physica D,240(17):1395-1401.
YANG M,WANG Q R,2017a. Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions[J]. Fract Calc Appl Anal,20(3):679-705.
YANG M,WANG Q R,2017b. Approximate controllability of Hilfer fractional differential inclusions with nonlocal conditions[J]. Math Meth Appl Sci,40(4):1126-1138.
0
浏览量
15
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构