1.华南农业大学海洋学院,广东 广州 510642
2.华南农业大学中山创新中心,广东 中山 528400
3.江门市自然资源局,广东 江门 529000
杨慧荣(1977年生),女;研究方向:渔业资源与环境关系;E-mail:hry@scau.edu.cn
曾泽乾(1999年生),男;研究方向:渔业资源与环境关系;E-mail:zengzq0227@163.com
纸质出版日期:2023-03-25,
网络出版日期:2023-03-02,
收稿日期:2022-12-28,
录用日期:2023-02-02
扫 描 看 全 文
杨慧荣,曾泽乾,刘建新.红树林渔业碳汇功能及其影响研究进展[J].中山大学学报(自然科学版),2023,62(02):10-16.
YANG Huirong,ZENG Zeqian,LIU Jianxin.Research progress of mangrove fishery carbon sink function and its impact[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(02):10-16.
杨慧荣,曾泽乾,刘建新.红树林渔业碳汇功能及其影响研究进展[J].中山大学学报(自然科学版),2023,62(02):10-16. DOI: 10.13471/j.cnki.acta.snus.2022E072.
YANG Huirong,ZENG Zeqian,LIU Jianxin.Research progress of mangrove fishery carbon sink function and its impact[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(02):10-16. DOI: 10.13471/j.cnki.acta.snus.2022E072.
渔业碳汇是指利用渔业生产活动中的水生生物吸收大气溶解在水体中的CO
2
,通过收获将已转化为水产品的碳移出水体或生物沉积作用将其沉降于水底的过程和机制。由于这些水生生物所吸收的碳在该过程和机制中被再利用或被储存,水域生态系统吸收和储存大气CO
2
的能力得到增强,对实现“碳中和”具有重要意义。本文系统综述了近年来红树林渔业碳汇的研究进展,通过分析红树林水生生物的碳汇功能,描述红树林水域生态系统碳循环过程,探讨了以红树林渔业碳汇为基础所形成的产业模式现状和前景,为深入研究红树林生态系统物质循环及能量流动,提高渔业碳汇增汇技术,实现碳中和目标提供理论基础。
Fishery carbon sink refers to the process and mechanism of using aquatic organisms in fishery production activities to absorb CO
2
dissolved in the atmosphere in the water body, and transfer the carbon converted into aquatic products out of the water body through harvesting or biodeposition to settle it on the bottom. Since the carbon absorbed by these aquatic organisms is reused or stored in this process, the ability of aquatic ecosystems to absorb and store atmospheric CO
2
is enhanced, which is of great significance for achieving “carbon neutrality”.This review systematically summaries the research progress of mangrove fishery carbon sink in recent years, describes the carbon cycle process of mangrove water ecosystem by analyzing the carbon sink function of mangrove aquatic organisms. Finally, the paper discusses the current situation and prospect of the industrial model formed on the basis of mangrove fishery carbon sink for further studying the material cycle and energy flow of mangrove ecosystem, improving the technology of fishery carbon sink and providing the theoretical basis to achieve carbon neutrality.
渔业碳汇碳汇功能固碳能力碳收支
fishery carbon sinkcarbon sink functioncarbon sequestration capacitycarbon budget
曹俐, 王莹, 2020. 海水养殖的碳汇潜力估算及其与经济发展的脱钩分析——以三大沿海地区为例[J]. 海洋经济, 10(5):48-56.
陈康, 刘妮, 唐以杰, 等, 2017. 中华乌塘鳢红树林种植-养殖耦合系统养殖试验[J]. 广东第二师范学院学报, 37(5):76-79.
陈鹭真, 林鹏, 王文卿, 2006. 红树植物淹水胁迫响应研究进展[J]. 生态学报, 26(2):586-593.
陈瑶瑶, 张雅松, 娄铎, 等, 2019. 广东英罗湾不同潮位红树林-滩涂系统碳密度差异[J]. 生态环境学报, 28(6):1134-1140.
陈中祥, 牟振波, 2011. 滤食性鱼类在淡水渔业中碳汇作用初探[J]. 水产学杂志, 24(3): 65-68.
姜成朴, 2019. 漳江口红树林区鱼类群落结构变化及其压力因素分析研究[D]. 厦门: 厦门大学.
蒋增杰, 方建光, 毛玉泽, 等, 2022. 滤食性贝类养殖碳汇功能研究进展及未来值得关注的科学问题[J]. 渔业科学进展, 43(5):106-114.
解绶启, 刘家寿, 李钟杰, 2013. 淡水水体渔业碳移出之估算[J]. 渔业科学进展, 34(1):82-89.
康斌, 线薇薇, 武云飞, 2007. 不同摄食水平条件下鮻的碳收支研究[J]. 中国海洋大学学报(自然科学版), 37(2): 247-250, 304.
李娇, 李梦迪, 公丕海, 等, 2022. 海洋牧场渔业碳汇研究进展[J]. 渔业科学进展, 43(5):142-150.
李雪, 刘子飞, 赵明军, 等, 2022. 我国水产养殖与捕捞业“双碳”目标及实现路径[J]. 中国农业科技导报, 24(11):13-26.
林鹏, 陈贞奋, 刘维刚, 1997. 福建红树林区大型藻类的生态学研究[J]. Acta Botanica Sinica, (2):176-180.
吕为群, 陈阿琴, 刘慧, 2012. 鱼类肠道的碳酸盐结晶物:海水鱼类养殖在碳汇渔业中的地位和作用[J]. 水产学报, 36(12):1924-1932.
牛亚丽, 2014. 桑沟湾滤食性贝类碳、氮、磷、硅元素收支的季节变化研究[D]. 浙江: 浙江海洋学院.
彭友贵, 陈桂珠, 佘忠明, 等, 2004. 红树林滩涂海水种植-养殖生态耦合系统初步研究[J]. 中山大学学报(自然科学版), 43(6):150-154.
佘忠明, 林俊雄, 彭友贵, 等, 2005. 红树林与水产养殖系统初步研究[J]. 生态学杂志, 24(7):837-840.
唐启升, 蒋增杰, 毛玉泽, 2022. 渔业碳汇与碳汇渔业定义及其相关问题的辨析[J]. 渔业科学进展, 43(5):1-7.
王宇丹, 兰德平, 梁爽, 等, 2022. 中国碳汇渔业发展现状与前景[J]. 农业展望, 18(6):41-45.
温瑞, 张继伟, 高超, 等, 2022. 养殖贝类碳汇价格核算研究[J]. 海洋开发与管理, 39(3):16-23.
徐皓, 刘晃, 张建华, 等, 2007. 我国渔业能源消耗测算[J].中国水产, (11):74-76+78.
徐姗楠, 陈作志, 黄洪辉, 等, 2010. 红树林种植-养殖耦合系统中尼罗罗非鱼的食源分析[J]. 中山大学学报(自然科学版), 49(1):101-106.
叶亨利, 2018. 基于牡蛎养殖业的广西茅尾海海洋空间资源承载力评价研究[D]. 厦门: 国家海洋局第三海洋研究所.
易志全, 2010. 湛江港红树林生态系统有机碳源对渔业资源的贡献率研究[D]. 湛江: 广东海洋大学.
袁立来, 穆希岩, 王琳, 等, 2022. 碳中和与淡水碳汇渔业[J]. 中国水产, (3):65-68.
张继红, 刘毅, 吴文广, 等, 2022. 海洋渔业碳汇项目方法学探究[J]. 渔业科学进展, 43(5):151-159.
张旭东, 徐承旭, 2019. 我国科学家养殖近江牡蛎获得成功[J]. 水产科技情报, 46(4):236.
章超桦, 曹文红, 吉宏武, 等, 2011. 水产资源低碳高效利用技术[J]. 水产学报, 35(2): 315-320.
ALONGI D M, 2014. Carbon cycling and storage in mangrove forests[J]. Ann Rev Mar Sci, 6: 195-219.
BARBIER E B, 2000. Valuing the environment as input: Review of applications to mangrove-fishery linkages[J]. Ecol Econ, 35(1): 47-61.
BARR J G, FUENTES J D, DeLONGE M S, et al, 2013. Summertime influences of tidal energy advection on the surface energy balance in a mangrove forest[J]. Biogeosciences, 10(1): 501-511.
BOUILLON S, DAHDOUH-GUEBAS F, RAO A V V S, et al, 2003. Sources of organic carbon in mangrove sediments: Variability and possible ecological implications[J]. Hydrobiologia, 495(1): 33-39.
CHAUVAUD L, THOMPSON J K, CLOERN J E, et al, 2003. Clams as CO2 generators: The Potamocorbula amurensis example in Sanfrancisco bay[J]. Limnol Oceanogr, 48(6): 2086-2092.
CHU H Y, CHEN N C, YEUNG M C, et al, 1998. Tide-tank system simulating mangrove wetland for removal of nutrients and heavy metals from wastewater[J]. Water Sci Technol, 38(1): 361-368.
COOPER C A, BURY N R, GROSELL M, 2006. The effects of pH and the iron redox state on iron uptake in the intestine of a marine teleost fish, gulf toadfish (Opsanus beta)[J]. Comp Biochem Physiol A Mol Integr Physiol, 143(3): 292-298.
COSTANZA R, D'ARGE R, de GROOT R, et al, 1998. The value of the world’s ecosystem services and natural capital[J]. Ecol Econ, 25(1): 3-15.
DONATO D C, KAUFFMAN J B, MURDIYARSO D, et al, 2011. Mangroves among the most carbon-rich forests in the tropics[J]. Nat Geosci, 4(5): 293-297.
EVANS D H, PIERMARINI P M, CHOE K P, 2005. The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste[J]. Physiol Rev, 85(1): 97-177.
FIELD C D, 1995. Impact of expected climate change on mangroves[J]. Hydrobiologia, 295(1): 75-81.
FRIESS D A, ROGERS K, LOVELOCK C E, et al, 2019. The state of the world’s mangrove forests: Past, present, and future[J]. Annu Rev Environ Resour, 44: 89-115.
JONES A R, ALLEWAY H K, McAFEE D, et al, 2022. Climate-friendly seafood: The potential for emissions reduction and carbon capture in marine aquaculture[J]. Bioscience, 72(2): 123-143.
LIU C, LIU G, CASAZZA M, et al, 2022. Current status and potential assessment of China’s Ocean carbon sinks[J]. Environ Sci Technol, 56(10): 6584-6595.
McCULLOCH M T, D'OLIVO J P, FALTER J, et al, 2017. Coral calcification in a changing world and the interactive dynamics of pH and DIC upregulation[J]. Nat Commun, 8: 15686.
MORRIS J P, HUMPHREYS M P, 2019. Modelling seawater carbonate chemistry in shellfish aquaculture regions: Insights into CO2 release associated with shell formation and growth[J]. Aquaculture, 501: 338-344.
RIVERA-MONROY V H, TORRES L A, BAHAMON N, et al, 1999. The potential use of mangrove forests as nitrogen sinks of shrimp aquaculture pond effluents: The role of denitrification[J]. J World Aquac Soc, 30(1): 12-25.
ROSS C L, DeCARLO T M, McCULLOCH M T, 2019. Environmental and physiochemical controls on coral calcification along a latitudinal temperature gradient in Western Australia[J]. Glob Chang Biol, 25(2): 431-447.
TANG Q, ZHANG J, FANG J, 2011. Shellfish and seaweed mariculture increase atmospheric CO2 absorption by coastal ecosystems[J]. Mar Ecol Prog Ser, 424: 97-104.
VERMAAT J E, THAMPANYA U, 2006. Mangroves mitigate tsunami damage: A further response[J]. Estuar Coast Shelf Sci, 69(1/2): 1-3.
VO-LUONG P, MASSEL S, 2008. Energy dissipation in non-uniform mangrove forests of arbitrary depth[J]. J Mar Syst, 74(1/2): 603-622.
WALSH P J, BLACKWELDER P, GILL K A, et al, 1991. Carbonate deposits in marine fish intestines: A new source of biomineralization[J]. Limnol Oceanogr, 36(6): 1227-1232.
WILSON R W, GROSELL M, 2003. Intestinal bicarbonate secretion in marine teleost fish-source of bicarbonate, pH sensitivity, and consequences for whole animal acid-base and calcium homeostasis[J]. Biochim Biophys Acta, 1618(2): 163-174.
WILSON R W, WILSON J M, GROSELL M, 2002. Intestinal bicarbonate secretion by marine teleost fish—Why and how?[J]. Biochim Biophys Acta BBA Biomembr, 1566(1/2): 182-193.
XIAN W, LIU R, ZHU X, 2003. Carbon budget of bastard halibut Paralichthys olivaceus in relation to body weight and temperature[J]. Chin J Ocean Limnol, 21(2): 134-140.
ZHANG Y, ZHANG J, LIANG Y, et al, 2017. Carbon sequestration processes and mechanisms in coastal mariculture environments in China[J]. Sci China Earth Sci, 60(12): 2097-2107.
ZHAO L, MILANO S, WALLISER E O, et al, 2018. Bivalve shell formation in a naturally CO2-enriched habitat: Unraveling the resilience mechanisms from elemental signatures[J]. Chemosphere, 203: 132-138.
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构