1.东北农业大学植物保护学院,黑龙江 哈尔滨 150030
2.黑龙江大学现代农业与生态环境学院,黑龙江 哈尔滨 150080
张宏钰(1998年生),女;研究方向:农业昆虫与害虫防治;E-mail:zhanghyu153@163.com
叶乐夫(1975年生),男;研究方向:昆虫生态学;E-mail:yelefuneau@foxmail.com
纸质出版日期:2023-07-25,
网络出版日期:2023-04-10,
收稿日期:2022-11-20,
录用日期:2023-01-12
扫 描 看 全 文
张宏钰,赛序岐,李俊鹏等.一种炭基有机肥对“大豆-大豆蚜-异色瓢虫”系统的影响[J].中山大学学报(自然科学版),2023,62(04):73-82.
ZHANG Hongyu,SAI Xuqi,LI Junpeng,et al.Effects of a carbon-based organic fertilizer on “Glycine max - Aphis glycines - Harmonia axyridis”[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(04):73-82.
张宏钰,赛序岐,李俊鹏等.一种炭基有机肥对“大豆-大豆蚜-异色瓢虫”系统的影响[J].中山大学学报(自然科学版),2023,62(04):73-82. DOI: 10.13471/j.cnki.acta.snus.2022E056.
ZHANG Hongyu,SAI Xuqi,LI Junpeng,et al.Effects of a carbon-based organic fertilizer on “Glycine max - Aphis glycines - Harmonia axyridis”[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(04):73-82. DOI: 10.13471/j.cnki.acta.snus.2022E056.
有机肥能否通过强化作物营养促成自身代谢物的合成,增加植物的抗虫特性,影响植株上取食的植食性昆虫及其捕食性天敌个体的生理生化指标和种群指标,从而为植物保护的免疫学方法提供理论基础。本研究以“大豆-蚜虫-瓢虫”为研究对象,分别构建有机肥和化肥 (无蚜无瓢、有蚜无瓢、有蚜有瓢) 6个处理;测定各处理组中大豆植株株高、地上地下生物量、大豆蚜种群数量动态、瓢虫发育历期、蛹质量,以及各处理中大豆、蚜虫、瓢虫的超氧化物歧化酶(SOD)/过氧化氢酶(CAT)/谷胱甘肽
S
-转移酶(GST)活性水平等指标。主要结果如下:(1) 在“有蚜有瓢”最接近田间情况的大豆植株上施用有机肥会导致大豆植株显著“矮化”(-12.3%,
P
=0.021 1)。(2) 有机肥在第7天时显著减少苗期大豆蚜种群数量(-25.9%,
P
=0.024 9,
P
=0.057 5),在第5个观测点减少有翅蚜数量(-40.7%)。(3) 有机肥升高瓢虫蛹质量(2.4%),缩短瓢虫幼虫(-2.5%)和蛹的发育历期(-13.4%)。(4) 大豆抗逆酶活性受到有机肥显著影响,SOD活性下降20.7%,CAT活性升高14.8%,GST活性升高27.8%。有机肥能够在有蚜有瓢接近田间实际的条件下优化作物性状,对同时受植物寄主及瓢虫天敌调节的植食性昆虫表现为中和的种群受抑制;有翅蚜减少,传毒潜力下降;对瓢虫天敌能够提供更好的营养条件,表现为蛹质量增加,低龄幼虫发育加快等变化。因此,有机肥对植物害虫免疫力的增强有积极影响。
Whether the organic fertilizer can promote the synthesis of its own metabolites by strengthening crop nutrition, increasing the insect resistance of plants, thus affecting the physiological and biochemical indicators and population indicators of herbivorous insects and their predatory natural enemies that feed on plants, which can provide a theoretical basis for immunological methods of plant protection. In this study, “
Glycine max - Aphis glycines - Harmonia axyridis
” was taken as the research object, and six treatments of organic fertilizer and chemical fertilizer were constructed, namely, without aphid and without ladybug, with aphid and without ladybug, with aphid and ladybug; The plant height, aboveground and underground biomass of soybean in each treatment group, the population dynamics of soybean aphid, the development duration of ladybug, pupa weight and the SOD/CAT/GST activity level of soybean, aphid and ladybug in each treatment group were measured.The main results are as follows:(1) Applying organic fertilizer on the soybean plant with “aphids and ladybird” closest to the field situation will lead to significant “dwarfing” of the soybean plant (-12.3%,
P
=0.021 1). (2) On the 7th day, organic fertilizer significantly reduced the number of soybean aphids in seedling stage (-25.9%,
P
=0.024 9,
P
=0.057 5), and the number of winged aphids in the fifth observation point (-40.7%). (3) Organic fertilizer increased the weight of ladybird pupae (2.4%), shortened the larval (-2.5%) and pupal development duration (-13.4%) of ladybirds. (4)The activity of soybean stress resistant enzyme was significantly affected by organic fertilizer. The activity of SOD decreased by 20.7%, the activity of CAT increased by 14.8%, and the activity of GST increased by 27.8%. Organic fertilizer can optimize crop characters when aphids and ladybirds are close to the actual conditions in the field, and inhibit the neutral population of phytophagous insects regulated by both plant hosts and ladybird natural enemies; The number of winged aphids decreased, and the potential of virus transmission decreased; It can provide better nutritional conditions for ladybird natural enemies, such as pupa weight gain, accelerating development of young larvae, etc.Therefore, organic fertilizer has a positive impact on the enhancement of plant pest immunity.
异色瓢虫(Harmonia axyridis)炭基有机肥三级营养系统抗逆酶
Harmonia axyridiscarbon-based organic fertilizertertiary nutrition systemanti-stress enzyme
查达球,2015.基于蛹重预测马尾松毛虫产卵量的技术研究[J].现代农业科技,(24):122-123.
董雅致,徐克章,李大勇,等,2015.不同氮素光合效率大豆品种叶片保护酶活性对施氮水平的响应[J].吉林农业大学学报,37(4):395-401+423.
傅意茗,陈婵珊,黄芳,等,2022.植物病毒与媒介昆虫互作促进其传播的研究进展[J].植物保护学报,49(3):711-720.
葛阳,万修福,王升,等,2021.氮肥对药用植物生态系统中土壤及三级营养关系的影响及机制[J].中国中药杂志,46(8): 1893-1900.
郭荣起,孙如建,张琪,等,2020.大豆的早熟矮化育种与应用研究[J].种子科技,38(23):34-35.
刘江,李明倩,常峻菲,等,2022.干旱胁迫及复水对大豆关键生育时期叶片生理特性的影响[J].中国农业气象,43(8):622-632.
马世炎,于洪春,赵奎军,等,2022.基于MaxEnt模型的大豆蚜全球潜在地理分布分析[J].昆虫学报,65(5):630-637.
王佳佳,付雪,王雪,等,2019.吡虫啉对异色瓢虫种群控害功能的影响[J].应用昆虫学报,56(5):1088-1097.
王菁菁,刘立强,秦伟,等,2022.新疆野苹果矮化性状形态学与生理指标评价[J].经济林研究,40(3):151-161.
王雪,付雪,赛序岐,等,2021.性比自调节:捕食性天敌异色瓢虫爆发成因[J].中山大学学报(自然科学版),60(5):119-125.
武德功,方文浩,杜军利,等,2018.不同蚜虫密度胁迫对抗感玉米幼苗生理物质的影响[J].浙江农业学报,30(4):528-536.
许向利,仵均祥,2020.有翅型和无翅型大豆蚜卵巢和胚胎发育的差异[J].昆虫学报,63(4): 433-438.
余明龙,黄露,郑殿峰,等,2022.外源调环酸钙对盐碱胁迫下大豆幼苗生长及生理特性的影响[J].生态学杂志,41(4):683-692.
袁星星,董少奇,王鑫辉,等,2020.昆虫解毒酶在其寄主适应性与抗药性进化中的作用[J].华中昆虫研究,16:37-43.
张月白,娄永根,2020.植物与植食性昆虫化学互作研究进展[J].应用生态学报,31(7):2151-2160.
赵美臣,2022.钝刺血蜱和麻点璃眼蜱谷胱甘肽S-转移酶的酶学特性与功能分析[D].石家庄:河北师范大学.
赵天璇,袁明龙,2017.我国异色瓢虫的生物生态学特性[J].草业科学,34(3):614-629.
CHEN M, CHEN J, LUO N, et al, 2018. Cholesterol accumulation by suppression of SMT1 leads to dwarfism and improved drought tolerance in herbaceous plants[J]. Plant Cell Environ, 41(6): 1417-1426.
HOWE G A, HERDE M, 2015. Interaction of plant defense compounds with the insect gut: New insights from genomic and molecular analyses[J]. Curr Opin Insect Sci, 9: 62-68.
LIU L, HOU X L, YUE W B, et al, 2020. Response of protective enzymes in western flower Thrips (Thysanoptera: Thripidae) to two leguminous plants[J]. Environ Entomol, 49(5): 1191-1197.
NAIKOO M I, DAR M I, KHAN F A, et al, 2019. Trophic transfer and bioaccumulation of lead along soil-plant-aphid-ladybird food chain[J]. Environ Sci Pollut Res Int, 26(23): 23460-23470.
QU C, WANG R, CHE W N, et al, 2021. Identification and tissue distribution of odorant binding protein genes in Harmonia axyridis (Coleoptera: Coccinellidae)[J]. J Integr Agric, 20(8): 2204-2213.
ROY N S, BAN Y W, YOO H, et al, 2021. Analysis of genome variants in dwarf soybean lines obtained in F6 derived from cross of normal parents (cultivated and wild soybean)[J]. Genomics Inform, 19(2): e19.
SANDRA N, TRIPATHI A, DIKSHIT H K, et al, 2020. Seed transmission of a distinct soybean yellow mottle mosaic virus strain identified from India in natural and experimental hosts[J]. Virus Res, 280: 197903.
dos SANTOS L A, BATISTA B L, da SILVA LOBATO A K, 2023. 24-epibrasinolide delays chlorophyll degradation and stimulates the photosynthetic machinery in magnesium-stressed soybean plants[J]. J Plant Growth Regul, 42(1): 183-198.
TIAN B, GILDOW F E, STONE A L, et al, 2019. Aphid vectors impose a major bottleneck on Soybean dwarf virus populations for horizontal transmission in soybean[J].Phytopathol Res, 1(1): 1-10.
TODD J C, STEWART L R, REDINBAUGH M G, et al, 2022. Soybean aphid (Hemiptera: Aphididae) feeding behavior is largely unchanged by soybean mosaic virus but significantly altered by the beetle-transmitted bean pod mottle virus[J]. J Econ Entomol, 115(4): 1059-1068.
YIN S, SUO F, KONG Q, et al, 2021. Biochar enhanced growth and biological nitrogen fixation of wild soybean (Glycine max subsp. soja siebold & zucc.) in a coastal soil of China[J]. Agriculture, 11(12): 1246.
ZHANG Q C, DENG X X, WANG J G, 2022. The effects of mepiquat chloride (DPC) on the soluble protein content and the activities of protective enzymes in cotton in response to aphid feeding and on the activities of detoxifying enzymes in aphids[J]. BMC Plant Biol, 22(1): 213.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构