中山大学航空航天学院,广东 深圳 518107
陈信君(1998年生),男;研究方向:系统模态分析与参数识别;E-mail:chenxj259@mail2.sysu.edu.cn
汪利(1989年生),男;研究方向:结构健康监测和计算力学;E-mail:wangli75@mail.sysu.edu.cn
纸质出版日期:2023-09-25,
网络出版日期:2023-06-19,
收稿日期:2022-11-05,
录用日期:2023-04-07
扫 描 看 全 文
陈信君,吕中荣,汪利.基于加速度信号分解和正则化的宽频位移重构方法[J].中山大学学报(自然科学版),2023,62(05):128-135.
CHEN Xinjun,LU Zhongrong,WANG Li.Broadband displacement reconstruction method based on acceleration signal decomposition and regularization[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(05):128-135.
陈信君,吕中荣,汪利.基于加速度信号分解和正则化的宽频位移重构方法[J].中山大学学报(自然科学版),2023,62(05):128-135. DOI: 10.13471/j.cnki.acta.snus.2022E053.
CHEN Xinjun,LU Zhongrong,WANG Li.Broadband displacement reconstruction method based on acceleration signal decomposition and regularization[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(05):128-135. DOI: 10.13471/j.cnki.acta.snus.2022E053.
实际工程应用中,位移测量通常需要设置参考点,导致大型结构的位移难以直接测量。为此,本文提出了一种基于加速度信号分解和正则化的位移重构新方法,直接利用易获取(无需参考点)、精度高的加速度数据来恢复结构的位移信息。首先,建立位移与加速度的离散线性方程,直接求解该方程得出,位移是加速度的二重积分。但由于直接积分对低频噪声十分敏感,导致出现低频漂移现象。因此在离散线性方程的基础上引入Tikhonov正则化,克服求解中的病态性,解决低频漂移问题。为了提高位移重构精度,还发展了基于重叠窗的位移重构方案,每个窗的区间长度应取信号主频周期的3倍左右。研究发现,该方法适合于单一主频(或窄频)加速度的位移重构,对宽频位移重构通常效果较差。为了提高宽频位移重构精度,本文进一步提出有限带宽信号分解方法,将宽频加速度信号分解为若干窄频信号,然后,利用正则化方法对每个窄频信号进行高精度的位移重构。最后,数值和实验算例结果表明,所提方法确实能从宽频加速度信号中准确重构出结构的位移响应。
In practical engineering application, the displacement measurement usually needs to set reference points, which makes it difficult to directly measure the displacement of large structures. Therefore, this paper proposes a new method which directly uses easily accessible (no reference point needed) and highly precise acceleration data to recover the displacement of the structure. Firstly, the discrete linear equation between displacement and acceleration is established. Displacement is the double integral of acceleration by directly solving the equation. However, direct integration is very sensitive to low frequency noise, resulting in "low-frequency drift" phenomenon. Secondly, Tikhonov regularization is introduced on the basis of discrete linear equations to overcome the ill-posed problem and solve the "low-frequency drift" problem. In addition, in order to improve the accuracy of displacement reconstruction, a displacement reconstruction scheme based on overlapping windows is developed, and the interval length of each window should be about 3 times of the main frequency period of the signal. It is found that this method is suitable for the displacement reconstruction of acceleration at single main frequency (or narrow frequency), but it is usually poor for broadband displacement reconstruction. In order to improve the accuracy of broadband displacement reconstruction, this paper further proposes a bandlimited signal decomposition method, which decomposes the broadband acceleration signal into several narrow frequency signals, and then uses the regularization method to reconstruct the displacement of each narrow frequency signal with high accuracy. Finally, numerical and experimental results show that the proposed method can accurately reconstruct the displacement of the structure from the broadband acceleration signal.
宽频位移重构低频漂移有限带宽信号分解正则化
broadband displacement reconstructionlow-frequency driftbandlimited signal decompositionregularization
陈培永, 王彤, 2011. 动态加速度信号的时频域积分方法[J].江苏航空, (S1): 73-76.
郝春冬, 昌飞, 石兴, 2021. 基于滤波器技术的加速度传感器测量位移的分析与设计[J]. 电子技术, 50(2): 16-18.
李智勇, 2009. 基于频域积分的振动信号处理方法[J]. 汽车科技, (5): 28-30.
谭颖轩, 陈衍茂, 汪利, 等, 2022. 基于模态修正策略和稀疏正则化的损伤识别[J]. 中山大学学报(自然科学版)(中英文), 61(3): 116-122.
杨达豪, 吕中荣, 汪利, 2021. 基于快速稀疏正则化的旋转梁损伤识别[J]. 中山大学学报(自然科学版), 60(6): 142-149.
BARDELLA L , CARINI A , GENNA F,2003. Time integration errors and some new functionals for the dynamics of a free mass - ScienceDirect[J]. Comput Struct, 81(24/25):2361-2372.
BOORE D M, BOMMER J J, 2005. Processing of strong-motion accelerograms: Needs, options and consequences[J]. Soil Dyn Earthq Eng, 25(2): 93-115.
BRANDT A, 2019. A signal processing framework for operational modal analysis in time and frequency domain[J]. Mech Syst Signal Process, 115: 380-393.
HSIEH S Y, LEE C T, 2011. Empirical estimation of the Newmark displacement from the Arias intensity and critical acceleration[J]. Eng Geol, 122(1/2): 34-42.
LEE H S, HONG Y H, PARK H W, 2010. Design of an FIR filter for the displacement reconstruction using measured acceleration in low-frequency dominant structures[J]. Int J Numer Meth Engng, 82(4): 403-434.
MA L, ZHOUA H, 2011. Study acceleration spectrum replication on an electrohydraulic servo test rig with displacement control[J]. Procedia Eng, 16: 204-210.
MA Z, CHOI J, YANG L, et al, 2023. Structural displacement estimation using accelerometer and FMCW millimeter wave radar[J]. Mech Syst Signal Process, 182: 109582.
NASSIF H H, GINDY M, DAVIS J, 2005. Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration[J]. NDT E Int, 38(3): 213-218.
PARK H S, PARK K, KIM Y, et al, 2015. Deformation monitoring of a building structure using a motion capture system[J]. IEEE/ASME Trans Mechatron, 20(5): 2276-2284.
PARK J W, SIM S H, JUNG H J, et al, 2013. Development of a wireless displacement measurement system using acceleration responses[J]. Sensors (Basel), 13(7): 8377-8392.
PARK S K, PARK H W, SHIN S, et al, 2008. Detection of abrupt structural damage induced by an earthquake using a moving time window technique[J]. Comput Struct, 86(11/12): 1253–1265.
SOHN H, DUTTA D, YANG J Y, et al, 2011. Automated detection of delamination and disbond from wavefield images obtained using a scanning laser vibrometer[J]. Smart Mater Struct, 20(4): 045017.
TOMITA F, KIDO M, OSADA Y, et al, 2015. First measurement of the displacement rate of the Pacific Plate near the Japan Trench after the 2011 Tohoku-Oki earthquake using GPS/acoustic technique[J]. Geophys Res Lett, 42(20): 8391-8397.
WANG L, LIU J, LU Z R, 2020. Bandlimited force identification based on sinc-dictionaries and Tikhonov regularization[J]. J Sound Vib, 464: 114988.
XU Y, BROWNJOHN J M W, HESTER D, et al, 2017. Long-span bridges: Enhanced data fusion of GPS displacement and deck accelerations[J]. Eng Struct, 147: 639-651.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构