中山大学生命科学学院,广东 广州 510275
陈晓彤(1997年生),女;研究方向:非编码RNA生物学;E-mail:chenxt223@mail2.sysu.edu.cn
陈月琴(1964年生),女;研究方向:非编码RNA生物学;E-mail:lsscyq@mail.sysu.edu.cn
纸质出版日期:2023-05-25,
网络出版日期:2023-03-12,
收稿日期:2022-10-30,
录用日期:2023-02-03
扫 描 看 全 文
陈晓彤,赵文龙,孙林玉等.非编码RNA来源的小肽:“微不足道”却“功能强大”[J].中山大学学报(自然科学版),2023,62(03):1-13.
CHEN Xiaotong,ZHAO Wenlong,SUN Linyu,et al.Micropeptides derived from non-coding RNAs: Tiny but powerful[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(03):1-13.
陈晓彤,赵文龙,孙林玉等.非编码RNA来源的小肽:“微不足道”却“功能强大”[J].中山大学学报(自然科学版),2023,62(03):1-13. DOI: 10.13471/j.cnki.acta.snus.2022E049.
CHEN Xiaotong,ZHAO Wenlong,SUN Linyu,et al.Micropeptides derived from non-coding RNAs: Tiny but powerful[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(03):1-13. DOI: 10.13471/j.cnki.acta.snus.2022E049.
非编码RNA(ncRNA, non-coding RNA)长久以来被认为不具有编码能力。近年来随着研究技术和生物信息学工具的迅速发展,研究发现在基因组的非编码区域上存在大量小开放阅读框(sORFs,small/short open reading frames),其翻译产物被称作小ORF编码肽(SEPs,sORF encoded peptides)或小肽(micropeptides)。部分小肽被证实在细胞内稳定存在并独立于其来源RNA发挥重要作用。本文系统总结了非编码RNA来源小肽的鉴定方法、可编码小肽的RNA类型以及其研究困难和瓶颈,并重点回顾了疾病和植物中发现的功能小肽,以期对小肽的筛选鉴定提供思考,对小肽作为药物研发或者农作物增产的关键靶点提供新的思路和方向。
It was long presumed that non-coding RNAs (ncRNAs) are lacking in protein-coding potential. However, recent advances in technology and tools have led to an important finding that a number of small open reading frames (sORFs) were found in different kind of ncRNAs, and their translated products have been termed sORF encoded peptides (SEPs) or micropeptides. Some micropeptides have been confirmed to exist stably in cells and play important roles independently of their source RNA. In this review, we summarize the identification methods of micropeptides derived from ncRNAs, the types of RNA that can encode micropeptides, and focus on the functional micropeptides found in diseases and plants. The purpose of the review is to provide a thought on the screening and identification of micropeptides, and provide new ideas for micropeptides as potentials for drug development or crop yield improvement.
非编码RNA小肽非经典翻译鉴定方法调控机制
non-coding RNAmicropeptidenon-canonical translationidentification methodsregulation mechanism
ANDRIEUX P, CHEVILLARD C, CUNHA-NETO E, et al, 2021. Mitochondria as a cellular hub in infection and inflammation[J]. Int J Mol Sci, 22(21): 11338.
ASHWAL-FLUSS R, MEYER M, PAMUDURTI N, et al, 2014. circRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell, 56(1): 55-66.
AUBREY B J, KELLY G L, JANIC A, et al, 2018. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression?[J]. Cell Death Differ, 25(1): 104-113.
BAKHTI S Z, LATIFI-NAVID S, 2022. Non-coding RNA-encoded peptides/proteins in human cancer: The future for cancer therapy[J]. Curr Med Chem, 29(22): 3819-3835.
BEGUM S, YIU A, STEBBING J, et al, 2018. Novel tumour suppressive protein encoded by circular RNA, circ-SHPRH, in glioblastomas[J]. Oncogene, 37(30): 4055-4057.
BHATTA A, ATIANAND M, JIANG Z, et al, 2020. A mitochondrial micropeptide is required for activation of the Nlrp3 inflammasome[J]. J Immunol, 204(2): 428-437.
BRAZÃO T F, JOHNSON J S, MÜLLER J, et al, 2016. Long noncoding RNAs in B-cell development and activation[J]. Blood, 128(7): e10-e19.
CALVO S E, PAGLIARINI D J, MOOTHA V K, 2009. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans[J]. Proc Natl Acad Sci USA, 106(18): 7507-7512.
CAO X, SLAVOFF S A, 2020. Non-AUG start codons: Expanding and regulating the small and alternative ORFeome[J]. Exp Cell Res, 391(1): 111973.
CARDON T, FOURNIER I, SALZET M, 2021. Shedding light on the ghost proteome[J]. Trends Biochem Sci, 46(3): 239-250.
CARRIERI C, CIMATTI L, BIAGIOLI M, et al, 2012. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat[J]. Nature, 491(7424): 454-457.
CARTHEW R W, SONTHEIMER E J, 2009. Origins and mechanisms of miRNAs and siRNAs[J]. Cell, 136(4): 642-655.
CHEN Q J, DENG B H, GAO J, et al, 2020. A miRNA-encoded small peptide, vvi-miPEP171d1, regulates adventitious root formation[J]. Plant Physiol, 183(2): 656-670.
CHILDS B G, BAKER D J, KIRKLAND J L, et al, 2014. Senescence and apoptosis: Dueling or complementary cell fates?[J]. EMBO Rep, 15(11): 1139-1153.
CHU Q, MARTINEZ T F, NOVAK S W, et al, 2019. Regulation of the ER stress response by a mitochondrial microprotein[J]. Nat Commun, 10(1): 4883.
CHUGUNOVA A, LOSEVA E, MAZIN P, et al, 2019. LINC00116 codes for a mitochondrial peptide linking respiration and lipid metabolism[J]. Proc Natl Acad Sci USA, 116(11): 4940-4945.
COUSO J P, PATRAQUIM P, 2017. Classification and function of small open reading frames[J]. Nat Rev Mol Cell Biol, 18(9): 575-589.
COUZIGOU J M, ANDRÉ O, GUILLOTIN B, et al, 2016. Use of microRNA-encoded peptide miPEP172c to stimulate nodulation in soybean[J]. New Phytol, 211(2): 379-381.
DELÁS M J, SABIN L R, DOLZHENKO E, et al, 2017. lncRNA requirements for mouse acute myeloid leukemia and normal differentiation[J]. eLife, 6: e25607.
DELBRIDGE A R, VALENTE L J, STRASSER A, 2012. The role of the apoptotic machinery in tumor suppression[J]. Cold Spring Harb Perspect Biol, 4(11): a008789.
DERRIEN T, JOHNSON R, BUSSOTTI G, et al, 2012. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression[J]. Genome Res, 22(9): 1775-1789.
DJEBALI S, DAVIS C A, MERKEL A, et al, 2012. Landscape of transcription in human cells[J]. Nature, 489(7414): 101-108.
EL-KENAWI A, RUFFELL B, 2017. Inflammation, ROS, and mutagenesis[J]. Cancer Cell, 32(6): 727-729.
ESTELLER M, 2011. Non-coding RNAs in human disease[J]. Nat Rev Genet, 12(12): 861-874.
EVAVOLD C L, KAGAN J C, 2019. Inflammasomes: Threat-assessment organelles of the innate immune system[J]. Immunity, 51(4): 609-624.
FANG J, MORSALIN S, RAO V, et al, 2017. Decoding of non-coding DNA and non-coding RNA: Pri-micro RNA-encoded novel peptides regulate migration of cancer cells[J]. J Pharmaceut Sci Pharmacol, 3(1): 23-27.
FERNIE A R, CARRARI F, SWEETLOVE L J, 2004. Respiratory metabolism: Glycolysis, the TCA cycle and mitochondrial electron transport[J]. Curr Opin Plant Biol, 7(3): 254-261.
FORRESTER S J, KIKUCHI D S, HERNANDES M S, et al, 2018. Reactive oxygen species in metabolic and inflammatory signaling[J]. Circ Res, 122(6): 877-902.
GE Q, JIA D, CEN D, et al, 2021. Micropeptide ASAP encoded by LINC00467 promotes colorectal cancer progression by directly modulating ATP synthase activity[J]. J Clin Invest, 131(22): e152911.
GUO B, ZHAI D, CABEZAS E, et al, 2003. Humanin peptide suppresses apoptosis by interfering with Bax activation[J]. Nature, 423(6938): 456-461.
GUO J U, AGARWAL V, GUO H, et al, 2014. Expanded identification and characterization of mammalian circular RNAs[J]. Genome Biol, 15(7): 409.
GUTTMAN M, RUSSELL P, INGOLIA N, et al, 2013. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins[J]. Cell, 154(1): 240-251.
HANADA K, AKIYAMA K, SAKURAI T, et al, 2010. sORF finder: A program package to identify small open reading frames with high coding potential[J]. Bioinformatics, 26(3): 399-400.
HANAHAN D, WEINBERG R, 2011. Hallmarks of cancer: The next generation[J]. Cell, 144(5): 646-674.
HANGAUER M J, VAUGHN I W, MCMANUS M T, 2013. Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs[J]. PLoS Genet, 9(6): e1003569.
HUANG J Z, CHEN M, CHEN D, et al, 2017. A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth[J]. Mol Cell, 68(1): 171-184.
INGOLIA N T, BRAR G A, ROUSKIN S, et al, 2012. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments[J]. Nat Protoc, 7(8): 1534-1550.
IVANOV A, MEMCZAK S, WYLER E, et al, 2015. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals[J]. Cell Rep, 10(2): 170-177.
IVANOV I P, FIRTH A E, MICHEL A M, et al, 2011. Identification of evolutionarily conserved non-AUG-initiated N-terminal extensions in human coding sequences[J]. Nucleic Acids Res, 39(10): 4220-4234.
IYER M K, NIKNAFS Y S, MALIK R, et al, 2015. The landscape of long noncoding RNAs in the human transcriptome[J]. Nat Genet, 47(3): 199-208.
JECK W R, SORRENTINO J A, WANG K, et al, 2013. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 19(2): 141-157.
JO E K, KIM J K, SHIN D M, et al, 2016. Molecular mechanisms regulating NLRP3 inflammasome activation[J]. Cell Mol Immunol, 13(2): 148-159.
JUDGE A, DODD M S, 2020. Metabolism[J]. Essays Biochem, 64(4): 607-647.
KANG Y J, YANG D C, KONG L, et al, 2017. CPC2: A fast and accurate coding potential calculator based on sequence intrinsic features[J]. Nucleic Acids Res, 45(W1): W12-W16.
KAPRANOV P, CHENG J, DIKE S, et al, 2007. RNA maps reveal new RNA classes and a possible function for pervasive transcription[J]. Science, 316(5830): 1484-1488.
KEARSE M G, WILUSZ J E, 2017. Non-AUG translation: A new start for protein synthesis in eukaryotes[J]. Genes Dev, 31(17): 1717-1731.
KIM S J, XIAO J, WAN J, et al, 2017. Mitochondrially derived peptides as novel regulators of metabolism[J]. J Physiol, 595(21): 6613-6621.
KIM S J, MEHTA H H, WAN J, et al, 2018. Mitochondrial peptides modulate mitochondrial function during cellular senescence[J]. Aging, 10(6): 1239-1256.
KONG L, ZHANG Y, YE Z Q, et al, 2007. CPC: Assess the protein-coding potential of transcripts using sequence features and support vector machine[J]. Nucleic Acids Res, 35(Web Server Issue): W345-W349.
KUMARI P, SAMPATH K, 2015. cncRNAs: Bi-functional RNAs with protein coding and non-coding functions[J]. Semin Cell Dev Biol, 47-48: 40-51.
LAURESSERGUES D, COUZIGOU J M, CLEMENTE H S, et al, 2015. Primary transcripts of microRNAs encode regulatory peptides[J]. Nature, 520(7545): 90-93.
LEE C, YEN K, COHEN P, 2013. Humanin: A harbinger of mitochondrial-derived peptides?[J]. Trends Endocrinol Metab, 24(5): 222-228.
LEE C, ZENG J, DREW B, et al, 2015. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance[J]. Cell Metab, 21(3): 443-454.
LEGNINI I, Di TIMOTEO G, ROSSI F, et al, 2017. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis[J]. Mol Cell, 66(1): 22-37.
LI X, YANG L, CHEN L L, 2018. The biogenesis, functions, and challenges of circular RNAs[J]. Mol Cell, 71(3): 428-442.
LI X L, PONGOR L, TANG W, et al, 2020. A small protein encoded by a putative lncRNA regulates apoptosis and tumorigenicity in human colorectal cancer cells[J]. eLife, 9: e53734.
LIANG W C, WONG C W, LIANG P P, et al, 2019. Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway[J]. Genome Biol, 20(1): 84.
LIN M F, JUNGREIS I, KELLIS M, 2011. PhyloCSF: A comparative genomics method to distinguish protein coding and non-coding regions[J]. Bioinformatics, 27(13): i275-i282.
LOGESWARAN D, LI Y, AKHTER K, et al, 2022. Biogenesis of telomerase RNA from a protein-coding mRNA precursor[J]. Proc Natl Acad Sci USA, 119(41): e2204636119.
LU P D, HARDING H P, RON D, 2004. Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response[J]. J Cell Biol, 167(1): 27-33.
LUCIANO F, ZHAI D, ZHU X, et al, 2005. Cytoprotective peptide humanin binds and inhibits proapoptotic Bcl-2/Bax family protein BimEL[J]. J Biol Chem, 280(16): 15825-15835.
LYKKE-ANDERSEN S, JENSEN T H, 2015. Nonsense-mediated mRNA decay: An intricate machinery that shapes transcriptomes[J]. Nat Rev Mol Cell Biol, 16(11): 665-677.
MA J, WARD C C, JUNGREIS I, et al, 2014. Discovery of human sORF-encoded polypeptides (SEPs) in cell lines and tissue[J]. J Proteome Res, 13(3): 1757-1765.
MA J, DIEDRICH J K, JUNGREIS I, et al, 2016. Improved identification and analysis of small open reading frame encoded polypeptides[J]. Anal Chem, 88(7): 3967-3975.
MAKAREWICH C A, BASKIN K K, MUNIR A Z, et al, 2018. MOXI is a mitochondrial micropeptide that enhances fatty acid β-oxidation[J]. Cell Rep, 23(13): 3701-3709.
MATSUMOTO A, PASUT A, MATSUMOTO M, et al, 2017. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide[J]. Nature, 541(7636): 228-232.
MEDZHITOV R, 2008. Origin and physiological roles of inflammation[J]. Nature, 454(7203): 428-435.
MENDELSOHN A R, LARRICK J W, 2018. Mitochondrial-derived peptides exacerbate senescence[J]. Rejuvenation Res, 21(4): 369-373.
MERINO-VALVERDE I, GRECO E, ABAD M, 2020. The microproteome of cancer: From invisibility to relevance[J]. Exp Cell Res, 392(1): 111997.
MOKREJS M, VOPÁLENSKÝ V, KOLENATY O, et al, 2006. IRESite: The database of experimentally verified IRES structures (www.iresite.org)[J]. Nucleic Acids Res, 34(Database issue): D125-D130.
MOTEKI S, PRICE D, 2002. Functional coupling of capping and transcription of mRNA[J]. Mol Cell, 10(3): 599-609.
NEAGU M, CONSTANTIN C, POPESCU I D, et al, 2019. Inflammation and metabolism in cancer cell—Mitochondria key player[J]. Front Oncol, 9: 348.
OLEXIOUK V, van CRIEKINGE W, MENSCHAERT G, 2018. An update on sORFs.org: a repository of small ORFs identified by ribosome profiling[J]. Nucleic Acids Res, 46(D1): D497-D502.
ORMANCEY M, RU A L, DUBOÉ C, et al, 2020. Internalization of miPEP165a into Arabidopsis roots depends on both passive diffusion and endocytosis-associated processes[J]. Int J Mol Sci, 21(7): 2266.
ORR M W, MAO Y, STORZ G, et al, 2020. Alternative ORFs and small ORFs: Shedding light on the dark proteome[J]. Nucleic Acids Res, 48(3): 1029-1042.
PAMUDURTI N R, BARTOK O, JENS M, et al, 2017. Translation of CircRNAs[J]. Mol Cell, 66(1): 9-21.
PANG Y, LIU Z, HAN H, et al, 2020. Peptide SMIM30 promotes HCC development by inducing SRC/YES1 membrane anchoring and MAPK pathway activation[J]. J Hepatol, 73(5): 1155-1169.
POLYCARPOU-SCHWARZ M, GROSS M, MESTDAGH P, et al, 2018. The cancer-associated microprotein CASIMO1 controls cell proliferation and interacts with squalene epoxidase modulating lipid droplet formation[J]. Oncogene, 37(34): 4750-4768.
PRENSNER J R, ENACHE O M, LURIA V, et al, 2021. Noncanonical open reading frames encode functional proteins essential for cancer cell survival[J]. Nat Biotechnol, 39(6): 697-704.
QIANG X, CHEN H, YE X, et al, 2018. M6AMRFS: Robust prediction of N6-methyladenosine sites with sequence-based features in multiple species[J]. Front Genet, 9: 495.
RODRIGUEZ C M, CHUN S Y, MILLS R E, et al, 2019. Translation of upstream open reading frames in a model of neuronal differentiation[J]. BMC Genomics, 20(1): 391.
RUIZ-ORERA J, MESSEGUER X, SUBIRANA J A, et al, 2014. Long non-coding RNAs as a source of new peptides[J]. eLife, 3: e03523.
SCHNEIDER T, HUNG L H, SCHREINER S, et al, 2016. CircRNA-protein complexes: IMP3 protein component defines subfamily of circRNPs[J]. Sci Rep, 6: 31313.
SHARMA A, BADOLA P K, BHATIA C, et al, 2020. Primary transcript of miR858 encodes regulatory peptide and controls flavonoid biosynthesis and development in Arabidopsis[J]. Nat Plants, 6(10): 1262-1274.
SINHA T, PANIGRAHI C, DAS D, et al, 2022. Circular RNA translation, a path to hidden proteome[J]. Wiley Interdiscip Rev RNA, 13(1): e1685.
SLAVOFF S A, MITCHELL A J, SCHWAID A G, et al, 2013. Peptidomic discovery of short open reading frame-encoded peptides in human cells[J]. Nat Chem Biol, 9(1): 59-64.
SONENBERG N, HINNEBUSCH A G, 2009. Regulation of translation initiation in eukaryotes: Mechanisms and biological targets[J]. Cell, 136(4): 731-745.
STARKE S, JOST I, ROSSBACH O, et al, 2015. Exon circularization requires canonical splice signals[J]. Cell Rep, 10(1): 103-111.
STEIN C S, JADIYA P, ZHANG X, et al, 2018. Mitoregulin: A lncRNA-encoded microprotein that supports mitochondrial super complexes and respiratory efficiency[J]. Cell Rep, 23(13): 3710-3720.
SUBRAMANIAN N, NATARAJAN K, CLATWORTHY M, et al, 2013. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation[J]. Cell, 153(2): 348-361.
SUN L, WANG W, HAN C, et al, 2021. The oncomicropeptide APPLE promotes hematopoietic malignancy by enhancing translation initiation[J]. Mol Cell, 81(21): 4493-4508.
SUPEK F, LEHNER B, LINDEBOOM R G H, 2021. To NMD or not to NMD: Nonsense-mediated mRNA decay in cancer and other genetic diseases[J]. Trends Genet, 37(7): 657-668.
TRAN N T, SU H, KHODADADI-JAMAYRAN A, et al, 2016. The AS-RBM15 lncRNA enhances RBM15 protein translation during megakaryocyte differentiation[J]. EMBO Rep, 17(6): 887-900.
VITORINO R, GUEDES S, AMADO F, et al, 2021. The role of micropeptides in biology[J]. Cell Mol Life Sci, 78(7): 3285-3298.
WAGNER S, HERRMANNOVÁ A, HRONOVÁ V, et al, 2020. Selective translation complex profiling reveals staged initiation and co-translational assembly of initiation factor complexes[J]. Mol Cell, 79(4): 546-560.
WANG L, PARK H J, DASARI S, et al, 2013a. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model[J]. Nucleic Acids Res, 41(6): e74.
WANG L, SUN Z, SU C, et al, 2019. A GmNINa-miR172c-NNC1 regulatory network coordinates the nodulation and autoregulation of Nodulation pathways in soybean[J]. Mol Plant, 12(9): 1211-1226.
WANG Y, CHEN L, CHEN B, et al, 2013b. Mammalian ncRNA-disease repository: A global view of ncRNA-mediated disease network[J]. Cell Death Dis, 4(8): e765.
WANG Y, WANG Z, 2015. Efficient backsplicing produces translatable circular mRNAs[J]. RNA, 21(2): 172-179.
WEBER A, WASILIEW P, KRACHT M, 2010. Interleukin-1beta (IL-1beta) processing pathway[J]. Sci Signal, 3(105): cm2.
WEST A P, SHADEL G S, 2017. Mitochondrial DNA in innate immune responses and inflammatory pathology[J]. Nat Rev Immunol, 17(6): 363-375.
WU P, MO Y, PENG M, et al, 2020a. Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA[J]. Mol Cancer, 19(1): 22.
WU Q, WRIGHT M, GOGOL M M, et al, 2020b. Translation of small downstream ORFs enhances translation of canonical main open reading frames[J]. EMBO J, 39(17): e104763.
WU S, ZHANG L, DENG J, et al, 2020c. A novel micropeptide encoded by Y-linked LINC00278 links cigarette smoking and AR signaling in male esophageal squamous cell carcinoma[J]. Cancer Res, 80(13): 2790-2803.
XIA X, LI X, LI F, et al, 2022. Correction: A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1[J]. Mol Cancer, 21(1): 124.
XIANG X, FU Y, ZHAO K, et al, 2021. Cellular senescence in hepatocellular carcinoma induced by a long non-coding RNA-encoded peptide PINT87aa by blocking FOXM1-mediated PHB2[J]. Theranostics, 11(10): 4929-4944.
XU W, DENG B, LIN P, et al, 2020. Ribosome profiling analysis identified a KRAS-interacting microprotein that represses oncogenic signaling in hepatocellular carcinoma cells[J]. Sci China Life Sci, 63(4): 529-542.
YADAV A, SANYAL I, RAI S P, et al, 2021. An overview on miRNA-encoded peptides in plant biology research[J]. Genomics, 113(4): 2385-2391.
YANG L, TANG Y, HE Y, et al, 2017a. High Expression of LINC01420 indicates an unfavorable prognosis and modulates cell migration and invasion in nasopharyngeal carcinoma[J]. J Cancer, 8(1): 97-103.
YANG Y, FAN X, MAO M, et al, 2017b. Extensive translation of circular RNAs driven by N6-methyladenosine[J]. Cell Res, 27(5): 626-641.
YANG Y, GAO X, ZHANG M, et al, 2018. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis[J]. J Natl Cancer Inst, 110(3): 304-315.
YANG Y, WANG Z, 2019. IRES-mediated cap-independent translation, a path leading to hidden proteome[J]. J Mol Cell Biol, 11(10): 911-919.
YE M, ZHANG J, WEI M, et al, 2020. Emerging role of long noncoding RNA-encoded micropeptides in cancer[J]. Cancer Cell Int, 20: 506.
YE Y, LIANG Y, YU Q, et al, 2015. Analysis of human upstream open reading frames and impact on gene expression[J]. Hum Genet, 134(6): 605-612.
YEASMIN F, YADA T, AKIMITSU N, 2018. Micropeptides encoded in transcripts previously identified as long noncoding RNAs: A new chapter in transcriptomics and proteomics[J]. Front Genet, 9: 144.
YOON J H, ABDELMOHSEN K, SRIKANTAN S, et al, 2012. LincRNA-p21 suppresses target mRNA translation[J]. Mol Cell, 47(4): 648-655.
YOUNG S K, WILLY J A, WU C, et al, 2015. Ribosome reinitiation directs gene-specific translation and regulates the integrated stress response[J]. J Biol Chem, 290(47): 28257-28271.
ZHANG M, ZHAO K, XU X, et al, 2018. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma[J]. Nat Commun, 9(1): 4475.
ZHANG S, RELJIĆ B, LIANG C, et al, 2020. Mitochondrial peptide BRAWNIN is essential for vertebrate respiratory complex Ⅲ assembly[J]. Nat Commun, 11(1): 1312.
ZHANG X O, WANG H B, ZHANG Y, et al, 2014. Complementary sequence-mediated exon circularization[J]. Cell, 159(1): 134-147.
ZHANG Y, JIANG J, ZHANG J, et al, 2021. CircDIDO1 inhibits gastric cancer progression by encoding a novel DIDO1-529aa protein and regulating PRDX2 protein stability[J]. Mol Cancer, 20(1): 101.
ZHENG X, CHEN L, ZHOU Y, et al, 2021. Correction to: A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling[J]. Mol Cancer, 20(1): 42.
ZHU S, WANG J, HE Y, et al, 2018. Peptides/proteins encoded by non-coding RNA: A novel resource bank for drug targets and biomarkers[J]. Front Pharmacol, 9: 1295.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构