1.中山大学航空航天学院,广东 深圳 518107
2.中山大学系统科学与工程学院,广东 广州 510275
廖逸枭(1999年生),男;研究方向:分布式推进气动优化;E-mail:liaoyx33@mail2.sysu.edu.cn
段焰辉(1985年生),男;研究方向:飞行器多学科优化设计;E-mail:duanyh7@mail.sysu.edu.cn
纸质出版日期:2023-09-25,
网络出版日期:2023-06-19,
收稿日期:2022-10-24,
录用日期:2023-03-31
扫 描 看 全 文
廖逸枭,郑敏,章录兴等.分布式螺旋桨倾转角度对机翼气动性能的影响[J].中山大学学报(自然科学版),2023,62(05):115-127.
LIAO Yixiao,ZHENG Min,ZHANG Luxing,et al.Influence of distributed propeller tilt angle on aerodynamic performance of wing[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(05):115-127.
廖逸枭,郑敏,章录兴等.分布式螺旋桨倾转角度对机翼气动性能的影响[J].中山大学学报(自然科学版),2023,62(05):115-127. DOI: 10.13471/j.cnki.acta.snus.2022E047.
LIAO Yixiao,ZHENG Min,ZHANG Luxing,et al.Influence of distributed propeller tilt angle on aerodynamic performance of wing[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(05):115-127. DOI: 10.13471/j.cnki.acta.snus.2022E047.
分布式电推进飞行器通过机翼前缘规律分布的螺旋桨滑流作用改善飞行器的升阻特性。本文采用类X-57的分布式电推进机翼构型,通过等效盘方法研究了分布式螺旋桨倾转对机翼气动特性的影响。介绍了等效盘方法,并用实验数据和CFD计算数据对其进行验证。对比了在不同来流迎角下起降构型在有无滑流影响下的升阻力特性。分别对机翼起降构型分析了螺旋桨倾转角度对机翼气动性能的影响。结果表明,螺旋桨倾转改变了滑流对机翼的实际迎角和推力方向,当实际迎角减小时,机翼的气动升力系数也随之减小,但是倾转导致的螺旋桨推力在升力方向上的分量提高了机翼的有效升力系数;在5.5°迎角下,对于起飞构型,螺旋桨倾转角为20.18°时获得最大有效升力系数,约为2.445 1,对于降落构型,螺旋桨倾转角为23.83°获得最大有效升力系数,约为3.628 8。
Distributed electric propulsion aircraft improve the lift-drag characteristics of the aircraft by using propellers distributed along the leading edge of the wing to generate slipstream. In this paper, we use a wing configuration similar to the X-57 and study the effect of propeller tilt on the wing aerodynamics using an actuator disk method. We introduce the actuator disk method and validate it with experimental data and CFD calculation data. We compare the lift-drag characteristics of the take-off and landing configurations with and without slipstream for different angles of attack. The effect of the propeller tilt angle on the aerodynamic performance of the wing is analyzed respectively for the take-off and landing configurations of the wing. The results show that propeller tilt changes the effective angle of attack and thrust direction of the slipstream on the wing. When the effective angle of attack decreases, the aerodynamic lift coefficient of the wing also decreases, but the component of propeller thrust in the lift direction due to tilt increases the effective lift coefficient of the wing. At 5.5° angle of attack, for the take-off configuration, the maximum effective lift coefficient is obtained when the propeller tilt angle is 20.18°, which is about 2.445 1, and for the landing configuration, the maximum effective lift coefficient is obtained when the propeller tilt angle is 23.83°, which is about 3.628 8.
分布式电推进等效盘螺旋桨倾转有效升力系数
distributed electric propulsionactuator diskpropeller tilteffective lift coefficient
孔祥浩, 张卓然, 陆嘉伟, 等, 2018. 分布式电推进飞机电力系统研究综述[J]. 航空学报, 39(1):46-62.
李博, 梁德旺, 黄国平, 2008. 基于等效盘模型的滑流对涡桨飞机气动性能的影响[J]. 航空学报, 29(4): 845-852.
杨小川,王运涛,王光学,等,2014.螺旋桨非定常滑流的高效数值模拟研究[J].空气动力学学报,32(3):289-294.
BORER N K, PATTERSON M D, 2020. X-57 high-lift propeller control schedule development[C]//AIAA Aviation 2020 Forum. Reston, Virginia: AIAA: 3091.
CONWAY J T, 1998. Exact actuator disk solutions for non-uniform heavy loading and slipstream contraction[J]. J Fluid Mech, 365: 235-267.
DEERE K A, VIKEN S, CARTER M, et al, 2017. Computational analysis of powered lift augmentation for the LEAPTech distributed electric propulsion wing[C]//35th AIAA Applied Aerodynamics Conference. Reston, Virginia: AIAA: 3921.
FEI X, GERMAN B, PATTERSON M D, 2018. Exploring the effects of installation geometry in high-lift propeller systems[C]//2018 AIAA Aerospace Sciences Meeting. Reston, Virginia: AIAA: 0277.
LITHERLAND B L, BORER N K, ZAWODNY N S, 2021. X-57 Maxwell high-lift propeller testing and model development[C]//AIAA Aviation 2021 Forum. Virtual Event. Reston, Virginia: AIAA: 3193.
LITHERLAND B L, PATTERSON M D, DERLAGA J M, et al, 2017. A method for designing conforming folding propellers[C]//17th AIAA Aviation Technology, Integration, and Operations Conference. Reston, Virginia: AIAA: 3781.
STOLL A M, BEVIRT J, MOORE M D, et al, 2014. Drag reduction through distributed electric propulsion[C]//14th AIAA Aviation Technology, Integration, and Operations Conference. Reston, Virigina: AIAA: 2851.
STRASH D, LEDNICER D, RUBIN T, 1998. Analysis of propeller-induced aerodynamic effects[C]//16th AIAA Applied Aerodynamics Conference. Reston, Virigina: AIAA: 2414.
TAKALLU M, GENTRY G, 1992. Aerodynamic characteristics of a propeller powered high lift semispan wing[C]//30th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: AIAA: 388.
TANG Y Y, LIU Y W, LU L P, 2016. Evaluation on turbulence models in simulating complex flows around high-lift airfoil[J]. J Aerosp Eng,31(12): 2859-2896.
VELDHUIS L, LUURSEMA G, 2000. Comparison of an actuator disk and a blade modeling approach in Navier-Stokes calculations on the SR-3 propfan[C]//18th Applied Aerodynamics Conference. Reston, Virigina: AIAA: 4528.
VIKEN J K, VIKEN S, DEERE K A, et al, 2017. Design of the cruise and flap airfoil for the X-57 Maxwell distributed electric propulsion aircraft[C]//35th AIAA Applied Aerodynamics Conference. Reston, Virginia: AIAA: 3922.
WHITFIELD D, JAMESON A, 1983. Three-dimensional Euler equation simulation of propeller-wing interaction in transonic flow[C]//21st Aerospace Sciences Meeting. Reston, Virigina: AIAA: 236.
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构