1.中国科学院西双版纳热带植物园,云南 勐腊 666303
2.中国科学院大学,北京 100049
3.中山大学生态学院,广东 广州 510275
包文杰(1998年生),男;研究方向:土壤生态学;E-mail:baowenjie@xtbg.ac.cn
刘胜杰(1984年生),男;研究方向:土壤生物学与生态学;E-mail:liushj63@mail.sysu.edu.cn
纸质出版日期:2023-05-25,
网络出版日期:2023-01-31,
收稿日期:2022-09-21,
录用日期:2022-10-10
扫 描 看 全 文
包文杰,刘胜杰.蜘蛛的种类和捕食策略对假眼小绿叶蝉捕食效率的影响[J].中山大学学报(自然科学版),2023,62(03):109-115.
BAO Wenjie,LIU Shengjie.Effects of spider species and foraging strategies on the predation efficiency to Empoasca vitis[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(03):109-115.
包文杰,刘胜杰.蜘蛛的种类和捕食策略对假眼小绿叶蝉捕食效率的影响[J].中山大学学报(自然科学版),2023,62(03):109-115. DOI: 10.13471/j.cnki.acta.snus.2022E031.
BAO Wenjie,LIU Shengjie.Effects of spider species and foraging strategies on the predation efficiency to Empoasca vitis[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(03):109-115. DOI: 10.13471/j.cnki.acta.snus.2022E031.
害虫的生物防治是一项重要的生态系统服务措施。为探究茶园生态系统中蜘蛛群落的动态变化,并比较不同种类和捕食策略的蜘蛛对茶园害虫假眼小绿叶蝉(
Empoasca vitis
Gothe)的捕食效率,本研究通过野外调查和室内饲养试验相结合的方法,于2012—2013年调查了云南普洱大尖山茶场4月、6月、8月和11月蜘蛛群落的动态变化。此外,在茶园内选取了8种常见蜘蛛,并根据捕食策略将其分为结网等待型蜘蛛和游猎型蜘蛛,在室内模拟茶园生境建立微生态系统,测定每种蜘蛛个体对假眼小绿叶蝉的日捕食量。结果显示,该茶场中蜘蛛的物种数和多度在6月和11月呈现明显的上升,结网等待型蜘蛛占据优势地位;不同种类的蜘蛛对假眼小绿叶蝉的捕食量存在显著差异,游猎型蜘蛛的日捕食量显著高于结网等待型蜘蛛。综上所述,茶园中蜘蛛群落变化与假眼小绿叶蝉的种群动态相关,且蜘蛛的种类和捕食策略会显著影响其对假眼小绿叶蝉的捕食效率。因此,深入了解捕食性天敌的特性有助于更好地预测茶园生态系统中害虫生物防治的效果。
Biological control of pests is an important ecosystem service. This research aimed to explore the dynamic change of spider community in tea plantation ecosystem, and compare the predation efficiency of spiders with different species identities and foraging strategies to the green leafhopper pest,
Empoasca vitis
Gothe
(Homoptera: Cicadellidae). This study combined field survey with feeding experiment in the lab, investigated the dynamic change of spider community in Apr., Jun., Aug. and Nov. in Dajian Mountain Tea Plantation in Pu’er City, Yunnan Province from 2012 to 2013. Furthermore, eight common spider species were collected from tea plantation and divided into sit-and-wait spider (SW spider) and actively hunting spider (AH spider) according to their predation strategies. The daily leafhopper consumption of each individual spider was measured in the microecosystem simulated to tea plantation. The results showed that the species number and abundance of spiders in Dajian Mountain Tea Plantation increased significantly in Jun. and Nov., and the sit-and-wait spiders were the dominant ones; the predation efficiency of different spider species on the green leafhopper was significantly different and the daily leafhopper consumption of AH spiders was significant higher than that of SW spiders. In conclusion, the changes of spider community in the tea plantation are related to the population dynamics of the green leafhopper, and the species identity and foraging strategy of spider will significantly affect the predation efficiency to the green leafhopper. Therefore, an in-depth understanding of the characteristics of predatory natural enemies will help to better predict the effect of biological control of pests in tea plantation ecosystem.
捕食策略生物防治假眼小绿叶蝉(Empoasca vitis Gothe)游猎型蜘蛛结网等待型蜘蛛
foraging strategybiological controlEmpoasca vitis Gotheactively hunting spidersit-and-wait spider
陈银方, 2016. 浙西南茶园蜘蛛消长动态和影响关键因子研究[J]. 蛛形学报, 25(1): 56-60.
戴轩, 1992. 我国茶树害虫生物防治概况[J]. 生物防治通报, 8(1): 41-43.
戴轩, 1999. 假眼小绿叶蝉的天敌蜘蛛种类及其物种多样性研究[J]. 昆虫天敌, 21(4): 164-169.
廖先骏, 唐天成, 汪玉新, 等, 2016. 中华通草蛉幼虫对茶蚜捕食作用的研究[J]. 山东农业科学, 48(4): 87-89.
苏红飞, 石尚, 陶仕科, 等, 2019. 云南大叶种茶园中小绿叶蝉和蜘蛛的数量动态研究[J]. 湖南农业科学, (10): 62-66.
ABRAMS P A, 2008. Measuring the impact of dynamic antipredator traits on predator-prey-resource interactions[J]. Ecology, 89(6): 1640-1649.
AQUILINO K M, CARDINALE B J, IVES A R, 2005. Reciprocal effects of host plant and natural enemy diversity on herbivore suppression: An empirical study of a model tritrophic system[J]. Oikos, 108(2): 275-282.
CARDINALE B J, HARVEY C T, GROSS K, et al, 2003. Biodiversity and biocontrol: Emergent impacts of a multi-enemy assemblage on pest suppression and crop yield in an agroecosystem[J]. Ecol Lett, 6(9): 857-865.
CRESSWELL W, LIND J, QUINN J L, 2010. Predator-hunting success and prey vulnerability: Quantifying the spatial scale over which lethal and non-lethal effects of predation occur[J]. J Anim Ecol, 79(3): 556-562.
FINKE D L, DENNO R F, 2005. Predator diversity and the functioning of ecosystems: The role of intraguild predation in dampening trophic cascades[J]. Ecol Lett, 8(12): 1299-1306.
GRIFFEN B D, 2006. Detecting emergent effects of multiple predator species[J]. Oecologia, 148(4): 702-709.
GRIFFIN J N, BYRNES J E K, CARDINALE B J, 2013. Effects of predator richness on prey suppression: A meta-analysis[J]. Ecology, 94(10): 2180-2187.
HAZARIKA L K, BHUYAN M, HAZARIKA B N, 2009. Insect pests of tea and their management[J]. Annu Rev Entomol, 54: 267-284.
HOOPER D U, F S ⅢCHAPIN, EWEL J J, et al, 2005. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge[J]. Ecol Monogr, 75(1): 3-35.
HUEY R B, PIANKA E R, 1981. Ecological consequences of foraging mode[J]. Ecology, 62(4): 991-999.
LIU S, LI Z, SUI Y, et al, 2015a. Spider foraging strategies dominate pest suppression in organic tea plantations[J]. BioControl, 60(6): 839-847.
LIU S, CHEN J, GAN W, et al, 2015b. Spider foraging strategy affects trophic cascades under natural and drought conditions[J]. Sci Rep, 5: 12396.
MURPHY F, MURPHY J,2000. An introduction to the spiders of south east Asia[M]. Kuala Lumpur: Malaysian Nature Society:634.
MOUGI A, KONDOH M, 2016. Food-web complexity, meta-community complexity and community stability[J]. Sci Rep, 6: 24478.
MILLER J R B, AMENT J M, SCHMITZ O J, 2014. Fear on the move: Predator hunting mode predicts variation in prey mortality and plasticity in prey spatial response[J]. J Anim Ecol, 83(1): 214-222.
NAKAZAWA T, OHBA S Y, USHIO M, 2013. Predator-prey body size relationships when predators can consume prey larger than themselves[J]. Biol Lett, 9(3): 20121193.
NARANJO S E, ELLSWORTH P C, FRISVOLD G B, 2015. Economic value of biological control in integrated pest management of managed plant systems[J]. Annu Rev Entomol, 60: 621-645.
ROSS C T, WINTERHALDER B, 2015. Sit-and-wait versus active-search hunting: A behavioral ecological model of optimal search mode[J]. J Theor Biol, 387: 76-87.
SCHMITZ O J, 2008. Effects of predator hunting mode on grassland ecosystem function[J]. Science, 319(5865): 952-954.
SCHMITZ O J, 2009. Effects of predator functional diversity on grassland ecosystem function[J]. Ecology, 90(9): 2339-2345.
SCHMITZ O J, SUTTLE K B, 2001. Effects of top predator species on direct and indirect interactions in a food web[J]. Ecology, 82(7): 2072-2081.
SOLUK D A, 1993. Multiple predator effects: Predicting combined functional response of stream fish and invertebrate predators[J]. Ecology, 74(1): 219-225.
SIH A, ENGLUND G, WOOSTER D, 1998. Emergent impacts of multiple predators on prey[J]. Trends Ecol Evol, 13(9): 350-355.
VANCE-CHALCRAFT H D, SOLUK D A, OZBURN N, 2004. Is prey predation risk influenced more by increasing predator density or predator species richness in stream enclosures?[J]. Oecologia, 139(1): 117-122.
VANCE-CHALCRAFT H D, SOLUK D A, 2005. Multiple predator effects result in risk reduction for prey across multiple prey densities[J]. Oecologia, 144(3): 472-480.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构