1.广东省热带亚热带植物资源重点实验室 / 中山大学生态学院,广东 深圳 518107
2.广东封开黑石顶省级自然保护区管理处,广东 肇庆 526536
3.江西省林业科技推广和宣传教育中心,江西 南昌 330038
关易云(1992年生),女;研究方向:植物胁迫生理与生态;E-mail:eric.1105@qq.com
雷纯义(1965年生),男;研究方向:苔藓植物生理生态;E-mail:hsdlcy@126.com
刘蔚秋(1970年生),女;研究方向:植物生理生态学和环境修复;E-mail:lsslwq@mail.sysu.edu.cn
纸质出版日期:2023-01-25,
网络出版日期:2022-06-06,
收稿日期:2022-03-22,
录用日期:2022-04-25
扫 描 看 全 文
关易云,雷纯义,王倩等.大灰藓低温响应的时间动态[J].中山大学学报(自然科学版),2023,62(01):124-130.
GUAN Yiyun,LEI Chunyi,WANG Qian,et al.Temporal dynamics of physiological responses of Hypnum plumaeforme to low temperature[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(01):124-130.
关易云,雷纯义,王倩等.大灰藓低温响应的时间动态[J].中山大学学报(自然科学版),2023,62(01):124-130. DOI: 10.13471/j.cnki.acta.snus.2022E008.
GUAN Yiyun,LEI Chunyi,WANG Qian,et al.Temporal dynamics of physiological responses of Hypnum plumaeforme to low temperature[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(01):124-130. DOI: 10.13471/j.cnki.acta.snus.2022E008.
以广泛分布的大灰藓(
Hypnum plumaeforme
)作为研究对象,研究其对低温响应的时间动态特征。结果显示:丙二醛含量在低温处理12 h时上升,此后丙二醛含量降低至初始水平,而过氧化氢含量在实验处理期间呈明显波动状态;低温抑制了大灰藓超氧化物歧化酶的活性,但低温处理植物中过氧化氢酶和过氧化物歧化酶活性整体上略高于对照;可溶性糖在低温处理84 h后明显高于对照,但低温处理导致脯氨酸含量持续下降;植物体内脱落酸、乙烯、水杨酸和茉莉酸含量在低温处理12 h时均明显升高,但在36 h时降低,此后各激素含量逐步上升并维持在较高水平。研究结果表明植物的抗逆激素迅速参与植物胁迫响应的调控,而可溶性物质积累的响应速度相对较慢。
A wide distributed moss species
Hypnum plumaeforme
was selected as a research material to investigate the temporal dynamics of its responses to mild low temperature (LT). The results showed that LT induced a significant increase in the content of malondialdehyde at 12 h, and then the content decreased to the initial level, while H
2
O
2
content fluctuated during the experiment period. LT inhibited the activity of superoxide dismutase,but the activities of catalase and guaiacol peroxidase in LT samples were higher than in control generally. Soluble sugars were accumulated after 84h of LT treatment, while the content of proline was continuously decreased during the treatment. The contents of several hormones including abscisic acid, ethylene, salicylic acid and jasmonates were accumulated in the LT treated at 12 h, but decreased at 36 h, and then increased again gradually and maintained at relatively high levels. These results suggested that the hormones were actively involved in the anti-stress regulation, while the compatible substances respond to LT were in a relatively slower efficiency.
大灰藓(Hypnum plumaeforme)低温生理响应时间动态
Hypnum plumaeformelow temperaturephysiological responsestime dynamic
MAHAJAN S, TUTEJA N. Cold,salinity and drought stresses: An overview [J]. Archives of Biochemistry & Biophysics, 2005, 444(2): 139-158.
RUELLAND E, ZACHOWSKI A. How plants sense temperature [J]. Environmental & Experimental Botany, 2010, 69(3): 225-232.
VERMA V, RAVINDRAN P, KUMAR P P. Plant hormone-mediated regulation of stress responses [J]. BMC Plant Biology, 2016, 16: 86.
VERSLUES P E. ABA and cytokinins: Challenge and opportunity for plant stress research [J]. Plant Molecular Biology, 2016, 91: 629-640.
BHYAN S B, MINAMI A, KANEKO Y, et al. Cold acclimation in the moss Physcomitrella patens involves abscisic acid-dependent signaling [J]. Journal of Plant Physiology, 2012, 169(2): 137-145.
LIU W Q, XU J Q, FU W, et al. Evidence of stress imprinting with population-level differences in two moss species [J]. Ecology and Evolution, 2019, 9(11): 6329-6341.
BARI R, JONES J D G. Role of plant hormones in plant defence responses [J]. Plant Molecular Biology, 2009, 69(4): 473-488.
HU Y R, JIANG L Q, WANG F, et al. Jasmonate regulates the inducer of CBF expression‐C‐repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis [J]. The Plant Cell, 2013, 25(8): 2907-2924.
WANG L J, FAN L, LOESCHER W, et al. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves [J]. BMC Plant Biology, 2010, 10: 34.
FERNANDEZ O, THEOCHARIS A, BORDIEC S, et al. Burkholderia phytofirmans strain PsJN acclimates grapevine to cold by modulating carbohydrates metabolism [J]. Molecular Plant-Microbe Interactions, 2012, 25(4): 496-504.
LIU B Y, LEI C Y, SHU T, et al. Effects of low-temperature stress on secondary metabolism in mosses exposed to simulated N deposition [J]. Plant Ecology and Diversity, 2015, 8(3): 1-12.
GUILLORY A,BONHOMME S. Phytohormone biosynthesis and signaling pathways of mosses [J]. Plant Molecular Biology, 2021, 107(4/5): 1-33.
BADIANI M, PAOLACCI A R, FUSARI A, et al. Non-optimal growth temperatures and antioxidants in the leaves of Sorghum bicolor (L.) Moench. Ⅱ. Short-term acclimation [J]. Journal of Plant Physiology, 1997, 151(4): 409-421.
WANG X, FANG G, LI Y, et al. Differential antioxidant responses to cold stress in cell suspension cultures of two subspecies of rice [J]. Plant Cell Tissue and Organ Culture, 2012, 113: 353-361.
JAN N, MAJEED U, ANDRABI K I, et al. Cold stress modulates osmolytes and antioxidant system in Calendula officinalis [J]. Acta Physiologiae Plantarum, 2018, 40(4): 73.
SCHWACHTJE J, WHITCOMB S J, FIRMINO A A P, et al. (2019) Induced, Imprinted, and primed responses to changing environments: does metabolism store and process information [J]. Frontiers in Plant Science, 2019, 10: 106.
GONG Z, CHEN W W, BAO G Z, et al. Physiological response of Secale cereale L. seedlings under freezing-thawing and alkaline salt stress [J]. Environmental Science and Pollution Research, 2020, 27(2): 1499-1507.
汤章城. 现代植物生理学实验指南[M]. 北京: 科学出版社, 1999.
BRADFORD M M. A rapid method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976, 72(1): 248-254.
YU Q, RENGEL Z. Micronutrient deficiency influences plant growth and activities of superoxide dismutases in narrow-leafed lupins [J]. Annals of Botany, 1999, 83(2): 175-182.
李仕飞, 刘世同, 周建平, 等. 分光光度法测定植物过氧化氢酶活性的研究[J]. 安徽农学通报, 2007, 13(2): 72-73.
PÉREZ-SOBA M, VISSER P H B. Nitrogen metabolism of Douglas fir and Scots pine as affected by optimal nutrition and water supply under conditions of relatively high atmospheric nitrogen deposition [J]. Trees, 1994, 9(1): 19-25.
李绍军, 龚月桦, 王俊儒, 等. 关于茚三酮法测定脯氨酸含量中脯氨酸与茚三酮反应之探讨[J]. 植物生理学报, 2005, 41(3): 365-368.
DEEBA F, PANDEY A K, RANJAN S, et al. Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress [J]. Plant Physiology & Biochemistry, 2012, 53: 6-18.
ERDAL S, GENISEL M, TURK H, et al. Modulation of alternative oxidase to enhance tolerance against cold stress of chickpea by chemical treatments [J]. Journal of Plant Physiology, 2015, 175: 95-101.
CHEN Y E, CUI J M, LI G X, et al. Effect of salicylic acid on the antioxidant system and photosystem Ⅱ in wheat seedlings [J]. Biologia Plantarum, 2016, 60(1): 139-147.
GUO Z, OU W, LU S, et al. Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity [J]. Plant Physiology & Biochemistry, 2006, 44(11/12): 828-836.
MALEKZADEH P. Influence of exogenous application of glycinebetaine on antioxidative system and growth of salt-stressed soybean seedlings (Glycine max L.) [J]. Physiology and Molecular Biology of Plants, 2015, 21(2): 225-232.
BADEA C, BASU S K. The effect of low temperature on metabolism of membrane lipids in plants and associated gene expression [J]. Plant Omics, 2009, 2(2): 78-84.
FOYER C H, SHIGEOKA S. Understanding oxidative stress and antioxidant functions to enhance photosynthesis [J]. Plant Physiology, 2011, 155(1): 93-100.
NUCCIO M L, RHODEST D, McNEIL S D, et al. Metabolic engineering of plants for osmotic stress resistance [J]. Current Opinion in Plant Biology, 1999, 2(2): 128-134.
AHMAD P, LATEF A A, HASHEM A, et al. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea [J]. Frontiers in Plant Science, 2016, 7: 347.
YOON Y E, KUPPUSAMY S, CHO K M, et al. Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma-aminobutyric acid (GABA) in spinach (Spinacia oleracea) [J]. Food Chemistry, 2017, 215: 185-192.
WANG X, CHEN S, ZHANG H, et al. Desiccation tolerance mechanism in resurrection fern-ally Selaginella tamariscina revealed by physiological and proteomic analysis [J]. Journal of Proteome Research, 2010, 9(12): 6561-6577.
LIU B Y, LEI C Y, LIU W Q. Nitrogen addition exacerbates the negative effects of low temperature stress on carbon and nitrogen metabolism in moss [J]. Frontiers in Plant Science, 2017, 8: 1328.
KIBA T, KUDO T, KOJIMA M, et al. Hormonal control of nitrogen acquisition: Role of auxin, abscisic acid, and cytokinin [J]. Journal of Experimental Botany, 2011,64(4): 1399-1409.
CATALÁ R, SALINAS J. The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation [J]. Plant Cell, 2014, 26(8): 3326-3342.
DONG C J, LI L, SHANG Q M, et al. Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings [J]. Planta, 2014, 240(4): 687-700.
MIURA K, TADA Y. Regulation of water, salinity, and cold stress responses by salicylic acid [J]. Frontiers in Plant Science, 2014, 5(2): 4-15.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构