图1 化合物1~7的结构
纸质出版日期:2022-11-25,
网络出版日期:2022-03-30,
收稿日期:2022-02-18,
录用日期:2022-03-08
扫 描 看 全 文
引用本文
阅读全文PDF
采用大米培养基对红树内生真菌Aspergillus sp. GXIMD00016进行规模发酵,利用层析技术对发酵产物进行分离纯化,获得7个化合物。经波谱技术鉴定结构,并通过与文献对比鉴定化合物为aculeatusquinone A(1)、aculeatusquinone C(2)、roseopurpurin A(3)、myxotrichin C(4)、2,7-didechlorovicanic(5)、atraric acid(6)和2,5-dimethyl-1,3-benzenediol(7),其中化合物5为新天然产物,化合物3和4为首次从曲霉菌属中获得。首次考察化合物1~3和5~7对脂多糖 (lipopolysaccharide,LPS) 诱导RAW 264.7细胞产生NO的抑制作用,化合物1~3具有显著抗炎作用,IC50值为16.68~28.15 μmol/L。
The mangrove endophytic fungus Aspergillus sp. GXIMD00016 was fermented by using rice medium. The metabolites were isolated by the chromatography technology and seven compounds were obtained. By analyzing MS and NMR spectroscopic data,their structures were identified as aculeatusquinone A (1), aculeatusquinone C (2), roseopurpurin A (3), myxotrichin C (4), 2,7-didechlorovicanic (5), atraric acid (6) and 2,5-dimethyl-1,3-benzenediol (7). Besides, compound 5 was a new natural product, and compounds 3 and 4 were isolated from Aspergillus sp. for the first time. The inhibitory effects of compounds 1-3 and 5-7 on lipopolysaccharide (LPS) induced NO production were evaluated in mouse macrophage RAW264.7 cells. The results showed that compounds 1-3 had a significant anti-inflammatory activity with IC50 values ranging from 16.68 to 28.15 μmol/L.
红树林内生真菌一直是海洋天然产物研究的热点之一[
本课题组对来源于北海金海湾红树林保护区红树秋茄叶片的内生真菌Aspergillus sp. GXIMD00016进行大规模发酵培养,对其发酵产物进行了分离纯化并获得了7个化合物,利用核磁共振技术和质谱技术最终确定了化合物的结构,包括3个苯醌衍生物(aculeatusquinone A(1)、aculeatusquinone C(2)、roseopurpurin A(3))、 2个呫吨酮衍生物(myxotrichin C(4)和2,7-didechlorovicanic(5))以及2个苯二醇衍生物(atraric acid(6)和2,5-dimethyl-1,3-benzenediol (7))(
图1 化合物1~7的结构
Fig.1 The structure of compounds 1-7
EYELA旋转蒸发仪N-1300S(日本东京理化器械株式会社);MLS-3781L-PC高压蒸汽灭菌器(日本Panasonic公司);Polaptronic HNQW5型旋光仪(德国Schmidt-Haensch公司);Bruker 600 MHz核磁仪(瑞士Bruker公司);Thermo Finnigan LCQ-DECA质谱仪(美国Thermo公司);岛津LC-20AP制备型HPLC(日本SHIMADZU公司);SW-CJ-2F医用型洁净工作台(苏州安泰空气技术有限公司);ZWYR-2102立式恒温培养振荡器(上海智城分析仪器制造有限公司);AL104万分之一电子天平(瑞士士METTLER TOLEDO公司);Epoch 全波长酶标仪(美国BioTek公司);YMC ODS-A色谱柱(日本YMC公司);青岛海洋化工薄层层析板GF254和柱层析硅胶(200~300目);核磁测试用氘代试剂、MTT细胞增殖和细胞毒性检测试剂盒、LPS(美国Sigma-Aldrich公司);NO检测试剂盒(S0021S)(碧云天生物技术研究所);HPLC用甲醇为色谱纯,柱层析用石油醚、乙酸乙酯、二氯甲烷和甲醇为分析纯。
内生真菌Aspergillus sp. GXIMD00016采集自北海金海湾红树林保护区,从红树植物秋茄Kandelia candel的叶子中分离纯化得到。通过用真菌ITS间隔序列的碱基序列在GenBank做对比相似性分析,与菌株Aspergillus sp.(KJ567455.1)有99%的相似度,因此鉴定菌株GXIMD00016为Aspergillus sp.。该菌株现保藏于广西中医药大学海洋药物研究院(菌株编号GXIMD00016)。
种子培养基(PDB):马铃薯 200 g、葡萄糖 20 g、海盐 3 g、水 1 000 mL;发酵培养基:东北大米 50 g,w=3‰海盐水 50 mL。将纯化的菌种接到装有200 mL 土豆培养液的锥形瓶(500 mL)中,在28 ℃摇床培养3~5 d,获得种子培养液;取2 mL种子培养液加到装有大米培养基的锥形瓶(1 000 mL)中,接种100瓶,28 ℃静置培养28 d。
用3倍体积甲醇浸泡菌体3次,每次24 h,减压浓缩得粗提液,用等体积乙酸乙酯萃取3次,减压浓缩除去乙酸乙酯获得粗浸膏(40 g),采用硅胶柱,以石油醚-乙酸乙酯为流动相进行梯度洗脱[V石油醚∶V乙酸乙酯 = 1∶9~0∶10],获得6个组分(Fr.1 ~ 6)。其中Fr.3(3.2 g)经正相柱层析[V二氯甲烷∶V甲醇 = 10∶0~1∶9]、凝胶Sephadex LH-20[V氯仿∶V甲醇 = 1∶1] 以及半制备HPLC[V乙腈∶V水 = 40∶60] 纯化获得化合物1(7.1 mg, tR 21.5 min)、2(9.2 mg, tR 11.5 min)、3(10.5 mg, tR 9.5 min)和4(11.4 mg, tR 18.3 min);Fr.4(3.5 g)经凝胶Sephadex LH-20(甲醇)和半制备 HPLC [V乙腈∶V水 = 50∶50] 纯化得到化合物5(9.4 mg, tR 12.3 min)、6(10.6 mg, tR 7.2 min)和7(7.4 mg, tR 5.2 min)。
1.5.1 化合物对 NO 生成量的抑制作用
参考献[11]中活性检测方法,实验设阴性对照组(不含样品和LPS)、阳性对照组(含LPS)、阳性药物组(含地塞米松)和实验组(含药物和LPS),每组数据平行测试3次。取100 µL对数生长期的小鼠巨噬细胞RAW 264.7接种于 96 孔板上,每孔1×105个。随后静置于培养箱中孵育24 h,吸尽上清液,加入100 µL含不同质量浓度梯度药物的培养基,再加入LPS 溶液(终质量浓度1 μg/mL)。细胞继续孵育 24 h。按一氧化氮检测试剂盒的方法取上清液进行反应,测定540 nm处的吸光度。
1.5.2 化合物的细胞毒活性
参考文献[
化合物1:红色粉末,EI-MS m/z 288 [M]+,结合核磁数据推测分子式为C16H16O5,不饱和度为9。核磁数据如下:1H NMR (methanol-d4, 600 MHz) δH 1.86 (3H, s, H-7), 1.79 (3H, s, H-8), 6.30 (1H, s, H-4′), 5.90 (1H, s, H-6′), 2.08 (3H, s, H-7′), 2.09 (3H, s, H-8′); 13C NMR (methanol-d4, 150 MHz) δC 182.4 (C-1), 152.1 (C-2), 128.6 (C-3), 184.1 (C-4), 154.1 (C-5), 115.0 (C-6), 9.1 (C-7), 8.2 (C-8), 156.7 (C-1′), 109.9 (C-2′), 156.7 (C-3′), 110.9 (C-4′), 136.0 (C-5′), 106.4 (C-6′), 8.9 (C-7′), 21.3 (C-8′)。与文献[
化合物2:黄色油状物,[α]28D +125.4(c 0.10, MeOH),EI-MS m/z 322 [M]+,推测其分子式为C17H22O6,不饱和度为7,相对分子质量显示比化合物1多1个羟基和1个甲基。核磁数据如下:1H NMR (methanol-d4, 600 MHz) δH 5.01 (1H, s, H-2), 4.61 (1H, s, H-4), 1.20 (3H, s, H-7), 1.69 (3H, s, H-8), 6.26 (1H, s, H-4′), 6.23 (1H, s, H-6′), 2.06 (3H, s, H-7′), 2.14 (3H, s, H-8′), 3.16 (3H, s, 3-OMe); 13C NMR (methanol-d4, 150 MHz) δC 82.1 (C-2), 84.5 (C-3), 72.2 (C-4), 109.1 (C-6), 13.1 (C-7), 7.8 (C-8), 159.6 (C-1′), 110.9 (C-2′), 156.8 (C-3′), 110.2 (C-4′), 137.0 (C-5′), 107.2 (C-6′), 8.7 (C-7′), 21.6 (C-8′) , 51.1 (3-OMe)。与文献[
化合物3:淡黄色油状物,[α]29D +117.1(c 0.09, MeOH),EI-MS m/z 366 [M]+,结合核磁数据推测分子式为C18H22O8,不饱和度为8。核磁数据如下:1H NMR (methanol-d4, 600 MHz) δH 4.91 (1H, s, H-2), 4.27 (1H, s, H-4), 1.27 (3H, s, H-7), 1.62 (3H, s, H-8), 3.03 (3H, s, 3-OMe), 6.36 (1H, s, H-4′), 2.06 (3H, s, H-7′) , 2.18 (3H, s, H-8′);13C NMR (methanol-d4, 150 MHz) δC 84.5 (C-2), 83.5 (C-3), 73.6 (C-4), 109.4 (C-6), 13.8 (C-7), 7.7 (C-8), 158.8 (C-1′), 115.8 (C-2′), 156.9 (C-3′), 113.0 (C-4′), 135.9 (C-5′), 120.2 (C-6′), 10.3 (C-7′), 20.3 (C-8′), 172.6 (C-9′), 51.0 (3-OMe)。与文献[
化合物4:黄色粉末,EI-MS m/z 246 [M]+,结合核磁数据推测其的分子式为C13H10O5,不饱和度为9。核磁数据如下:1H NMR(DMSO-d6, 600 MHz)δH 1.97 (3H, s, H-1), 5.64 (1H, s, H-3), 5.12 (2H, s, H-6), 6.77 (1H, s, H-10), 7.22 (1H, s, H-13);13C NMR(DMSO-d6, 150 MHz)δC 19.8 (C-1), 166.2 (C-2), 94.9 (C-3), 158.1 (C-4), 101.0 (C-5), 64.2 (C-6), 171.8 (C-7), 116.0 (C-8), 152.4 (C-9), 102.8 (C-10), 149.9 (C-11), 144.5 (C-12), 107.5 (C-13)。与文献[
化合物5:白色粉末,EI-MS m/z 314 [M]+,结合核磁数据推测其分子式为C18H18O5,不饱和度为10。核磁数据如下:1H NMR (DMSO-d6, 600 MHz) δH 6.47 (1H, s, H-2), 6.59 (1H, s, H-7), 2.28 (3H, s, 1-CH3), 2.04 (3H, s, 4-CH3), 2.28 (3H, s, 6-CH3), 3.16 (3H, s, 8-OCH3), 2.20 (3H, s, 9-CH3); 13C NMR (DMSO-d6, 150 MHz) δC 141.4 (C-1), 111.9 (C-2), 160.4 (C-3), 113.0 (C-4), 161.3 (C-4a), 142.5 (C-5a), 126.8 (C-6), 112.9 (C-7), 152.7 (C-8), 113.9 (C-9), 143.5 (C-9a), 163.6 (C-11), 114.6 (C-11a), 20.9 (1-CH3), 9.4 (4-CH3), 17.2 (6-CH3), 48.9 (8-OCH3), 9.8 (9-CH3)。以上数据与文献[
化合物6:黄色针晶,EI-MS m/z 196 [M]+,结合核磁数据推测其分子式为C10H12O4,不饱和度为5。核磁数据如下:1H NMR (methanol-d4, 600 MHz) δH 6.18 (1H, s, H-5), 2.39 (3H, s, H-8), 1.97 (3H, s, H-9), 3.86 (3H, s, H-10); 13C NMR (methanol-d4, 150 MHz) δC 104.9 (C-1), 164.2 (C-2), 109.9 (C-3), 161.5 (C-4), 111.5 (C-5), 140.9 (C-6), 174.0 (C-7), 7.9 (C-8), 24.3 (C-9), 52.0 (C-10)。与文献[
化合物7:白色粉末,EI-MS m/z 138 [M]+,结合核磁数据推测分子式为C8H10O2,不饱和度为4。核磁数据如下:1H NMR (MeOH-d4, 600 MHz) δH 6.09 (2H, s, H-4/6), 2.10 (3H, s, H-7), 1.94 (3H, s, H-8); 13C NMR(MeOH-d4, 150 MHz)δC 157.1 (C-1/3), 108.3 (C-2), 108.9 (C-4/6), 136.8 (C-5), 8.2 (C-7), 21.3 (C-8)。与文献[
以地塞米松作为本实验的阳性对照,对化合物1~3和5~7的抗炎活性进行了评价,考察其对LPS诱导巨噬细胞RAW 264.7产生NO的抑制作用,结果表明化合物1~3具有显著的抑制作用,IC50分别为(16.68 ± 0.41)、(28.15 ± 0.62)和(22.34 ± 0.63) μmol/L,优于地塞米松[IC50(36.08 ± 1.24)μmol/L];化合物5~7活性差或无活性(活性数据详见
本文从北海金海湾红树植物秋茄叶片的内生真菌Aspergillus sp. GXIMD00016中分离得到7个化合物,分别是aculeatusquinone A(1)、aculeatusquinone C(2)、roseopurpurin A(3)、myxotrichin C(4)、2,7-didechlorovicanic(5)、atraric acid(6)和2,5-dimethyl-1,3-benzenediol(7),其中,化合物5为新天然产物,化合物3和4为首次从曲霉菌属中获得。首次发现苯醌衍生物1~3具有显著的体外抗炎活性,且活性优于地塞米松,具有开发为抗炎药的潜力。
GENILAR L A, KURNIAWATY E, AZLI R, et al. Mangroves and their medicinal benefit: A mini review[J]. Annals of the Romanian Society for Cell Biology, 2021, 25(4): 695-709. [百度学术]
CARROLL A, COPP B R, DAVIS R A, et al. Marine natural product[J]. Natural Product Report, 2021, 38: 362-413. [百度学术]
ZHU T H, LU Z Y, FAN J, et al. Ophiobolins from the mangrove fungus Aspergillus ustus[J]. Journal of Natural Products, 2018, 81 (1): 2-9. [百度学术]
WU G W, YU G H, KURTAN T, et al. Versixanthones A-F, cytotoxic xanthone-chromanone dimers from the marine-derived fungus Aspergillus versicolor HDN1009[J]. Journal of Natural Products, 2015, 78(11):2691-2698. [百度学术]
ZHU G L, CHEN X H, ZHANG X M, et al. Polyhydroxy p-terphenyls from a mangrove endophytic fungus, Aspergillus candidus LDJ-5[J]. Journal of Natural Products, 2020, 83(1):8-13. [百度学术]
YANG S Q, LI X M, XU G M, et al. Antibacterial anthraquinone derivatives isolated from a mangrove-derived endophytic fungus Aspergillus nidulans by ethanol stress strategy[J]. Journal of Antibiotics, 2018, 71: 778-784. [百度学术]
CHI L P,LI X M,WAN Y P,et al. Ophiobolin sesterterpenoids and farnesylated phthalide derivatives from the deep-sea cold-seep-derived fungus Aspergillus insuetus SD-512[J]. Journal of Natural Products, 2020, 83(12): 3652-3660. [百度学术]
HUANG X S, HUANG H B, LI H X, et al. Asperterpenoid A, a new sesterterpenoid as an inhibitor of Mycobacterium tuberculosis protein tyrosine phosphatase B from the culture of Aspergillus sp. 16-5c[J]. Organic Letters, 2013, 15(4): 721-723. [百度学术]
XIAO Z E, LIN S E, TAN C B, et al. Asperlones A and B, dinaphthalenone derivatives from a mangrove endophytic fungus Aspergillus sp. 16-5C[J]. Marine Drugs, 2015, 13: 366-378. [百度学术]
HA T M, KIM D C, SOHN J H, et al. Anti-inflammatory and protein tyrosine phosphatase 1B inhibitory metabolites from the Antarctic marine-derived fungal strain Penicillium glabrum SF-7123[J]. Marine Drugs, 2020, 18(5):247-261. [百度学术]
刘红菊,闫冲,佘志刚.无瓣海桑内生真菌Aspergillus sp. ZJ-S4生物碱类次级代谢产物的分离鉴定及抗炎活性[J].广东药科大学学报, 2021, 37(3):1-6. [百度学术]
CHEN L, ZHANG W W, ZHENG Q H, et al. Aculeatusquinones A-D, novel metabolites from the marine-derived fungus Aspergillus aculeatus[J]. Heterocycles, 2013, 87(4): 861-868. [百度学术]
SHANG Z, KHALIL Z, LI L, et al. Roseopurpurins: Chemical diversity enhanced by convergent biosynthesis and forward and reverse Michael additions[J]. Organic Letters, 2016, 18(17): 4340-4343. [百度学术]
YUAN C, WANG H Y, WU C S, et al. Austdiol, fulvic acid and citromycetin derivatives from an endolichenic fungus, Myxotrichum sp.[J]. Phytochemistry Letters, 2013, 6(4): 662-666. [百度学术]
ELIX J A, VENABLES D A, BRAKO L. New chlorine-containing depsidones from the lichen Phyllopsora corallina var. ochroxantha[J]. Australian Journal of Chemistry, 1990, 43(11): 1953-1959. [百度学术]
HYLANDS P J, INGOLFSDOTTIR K. The isolation of methyl β-orsellinate from Stereocaulon alpinum and comments on the isolation of 4,6-dihydroxy-2- methoxy-3-methylacetophenone from Stereocaulon species[J]. Phytochemistry, 1985, 24(1): 127-129. [百度学术]
84
浏览量
59
下载量
0
CSCD
相关文章
相关作者
相关机构