华南农业大学水利与土木工程学院,广东 广州 510642
叶芝林(1996年生),女;研究方向:水土保持及水资源;E-mail:zhilin_ye@163.com
周买春(1965年生),男;研究方向:水文学及水资源;E-mail:mczhou@scau.edu.cn
纸质出版日期:2023-07-25,
网络出版日期:2023-03-31,
收稿日期:2022-10-18,
录用日期:2022-11-15
扫 描 看 全 文
叶芝林,周买春.广东省年降水量分布及大尺度地形对其影响[J].中山大学学报(自然科学版),2023,62(04):45-53.
YE Zhilin,ZHOU Maichun.Distribution of annual precipitation in Guangdong and influence of large-scale topography[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(04):45-53.
叶芝林,周买春.广东省年降水量分布及大尺度地形对其影响[J].中山大学学报(自然科学版),2023,62(04):45-53. DOI: 10.13471/j.cnki.acta.snus.2022D079.
YE Zhilin,ZHOU Maichun.Distribution of annual precipitation in Guangdong and influence of large-scale topography[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(04):45-53. DOI: 10.13471/j.cnki.acta.snus.2022D079.
通过对广东省1951—2018年期间86个雨量站降水量观测资料统计分析,广东省年降水量呈阶段性、不显著性、总体增加的趋势变化,而且各地区在不同时期的增长率不同,如中心城市的总体增长率约为全省的1.6倍。Pearson-Ⅲ型分布曲线和正态分布曲线对比分析表明,广东省年降水量地理分布的特征明显强于其时间分布特征(两种分布曲线的NS拟合度,在地理上分别为0.965和0.845;在时间上,年内分别为0.357和0.670,年际分别为0.582和0.547);年降水量区域分布、年内分布和年际分布的
C
v
值(分别为0.111,1.643和0.138)表明,广东省年降水量的季节变化,虽然时间长度上偏于对称(如每年雨、旱季的时间均约为6个月),但降水量值上差异明显,其峰谷比远超过其空间上和年际间的峰谷比。根据年降水量-区域累积面积分布曲线,广东省年降水区型与其大尺度地形相对应,包括:① 粤东、粤西沿海、珠江三角洲等平原地区和中部清远丘陵区为多雨/富雨区,② 中部清远丘陵区到粤北山区的交接地带及其向粤东、粤西两侧山区的延伸为平雨区,③ 粤东、粤西、粤北山区的背风区和雷州半岛地区为少雨/较少雨区;尤其从东雷州半岛、至粤西山区、至粤北山区前麓及到粤东武夷山山区前麓一带,年降水量与站点高程呈显著的对数关系,此处水汽趋于稳定并分层,形成了多雨区与少雨区的过渡带、分隔带。
By analyzing precipitation data from 1951 to 2018 at 86 meteorological stations in Guangdong Province, it is found that the precipitation slightly increases overall, with an annual period, and the increasing rates are different from year to year and from region to region, for example, the increasing rate of annual precipitation in central cities is 1.6 times of that of the whole province. Objective function values of Nash-Sutcliffe efficiency coefficient of Pearson-Ⅲ distribution and normal distribution are 0.965 and 0.845 respectively for its geographical distribution, 0.357 and 0.670 for its yearly temporal distribution, and 0.582 and 0.547 for decadal temporal distribution, implying that the annual precipitation in Guangdong is featured more geographically than temporally. The
C
v
values of the geographical, yearly, and decadal temporal distributions are 0.111, 1.643, and 0.138, respectively, indicating that the seasonal precipitation varies significantly, despite similar duration length (i.e., 6-month rainy and 6-month dry seasons each year) it has a large peak-to-valley ratio which is far more than the ratios of spatial and temporal distributions. According to the area-cumulation of annual precipitation, regional rainfall patterns in Guangdong correspond to the three step-topography: 1) Plain to mid-hilly regions including the east coast, west coast, Pearl River Delta, and Qingyuan county are areas rich in rainfall; 2) The transitional regions from mid-hilly to northern mountain areas, and their two wing extensions are areas with medium rainfall; 3) Leeward regions of eastern, western and northern mountain areas and Leizhou Peninsula are areas poor of rainfall. In particular, there is a belt from the east Leizhou Peninsula to the western mountains, then to the front of northern mountains, and the eastern front of Wuyi mountains in Guangdong, forming a transitional zone separating areas of rich in rainfall and poor in rainfall, where annual precipitation is related logarithmically to ground elevations.
地形尺度年降水时空分布广东省
topographical scaleannual precipitationspatial and temporal distributionsGuangdong Province
崔珏,周买春,刘远,等, 2013. 泗合水流域径流变化趋势及其影响因素分析[J]. 水电能源科学, 31(8): 22-26.
方精云,朱江玲,王少鹏,等, 2011. 全球变暖、碳排放及不确定性[J].中国科学:地球科学, 41(10): 1385-1395.
广东农村统计年鉴编辑委员会, 2021. 广东农村统计年鉴(2021)[M]. 北京: 中国统计出版社.
广东省地名委员会, 1989. 广东省县图集[M]. 广州: 广东省地图出版社.
广东省水文局, 2012. 广东省水文志[M]. 北京: 中国水利水电出版社.
侯景儒, 1990. 地质统计学的理论与方法[M]. 北京: 地质出版社.
廖义善,李定强,卓慕宁,等, 2014. 近50年广东省降雨时空变化及趋势研究[J]. 生态环境学报, 23(2): 223-228.
林爱兰,谷德军,郑彬,等, 2014. 广东前汛期暴雨水汽输送异常变化特征[J]. 热带气象学报, 30(6): 1001-1010.
刘永林,延军平,岑敏仪, 2015. 广东省降水非均匀性与气候变化的响应关系[J]. 中山大学学报(自然科学版), 54(5): 138-146.
刘远,周买春, 2017. 基于HYDRO1K、SRTM3和ASTER GDEM的韩江流域水文地形信息对比[J]. 中国农村水利水电, (2): 98-103.
宋丽琼,田原,邬伦,等, 2008. 日降水量的空间插值方法与应用对比分析——以深圳市为例[J]. 地球信息科学, 10(5): 566-572.
王春林,邹菊香,麦北坚,等, 2015. 近50年华南气象干旱时空特征及其变化趋势[J]. 生态学报, 35(3): 595-602.
詹道江,徐向阳,陈元芳, 2010. 工程水文学[M]. 4版. 北京:水利水电出版社.
赵亮,徐影,王劲松,等, 2011. 太阳活动对近百年气候变化的影响研究进展[J]. 气象科技进展, 1(4): 37-48.
郑腾飞,刘显通,万齐林,等, 2017. 近50年广东省分级降水的时空分布特征及其变化趋势的研究[J]. 热带气象学报,33(2): 212-220.
BROOK E J, BUIZERT C, 2018. Antarctic and global climate history viewed from ice cores[J].Nature,558(7709): 200-208.
BRUTSAERT W,1983. Evaporation into the atmosphere[M]. Netherlands: Springer.
DUAN Q Y, SOROOSHIAN S, GUPTA V K,1994. Optimal use of the SCE-UA global optimization method for calibrating watershed models[J].J Hydrol,158(3/4):265-284.
HAYS J D, IMBRIE J, SHACKLETON N J, 1976. Variations in the earth's orbit: Pacemaker of the ice ages[J]. Science, 194(4270): 1121-1132.
MATHERON G, 1963. Principles of geostatistics[J]. Eco Geol, 58(8): 1246-1266.
ZHOU M C, ISHIDAIRA H, HAPUARACHCHI H P, et al, 2006.Estimating potential evapotranspiration using Shuttleworth-Wallace model and NOAA-AVHRR NDVI data to feed a distributed hydrological model over the Mekong River basin[J]. J Hydrol, 327(1/2): 151-173.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构