1.山东省地质矿产勘查开发局第五地质大队 / 山东省院士工作站泰安分站,山东 泰安 271000
2.中国科学院广州地球化学研究所, 广东 广州 510640
3.中国科学院大学, 北京 100049
4.山东微山湖稀土有限公司,山东 济宁 277600
兰君(1986年生),男;研究方向:稀土矿勘查;E-mail:lanjun56@126.com
张鹏(1980年生),男;研究方向:矿床学;E-mail:zhang_6999@163.com
纸质出版日期:2023-05-25,
网络出版日期:2023-02-27,
收稿日期:2022-09-10,
录用日期:2022-10-14
扫 描 看 全 文
兰君,付瑞鑫,张鹏等.鲁西郗山稀土矿石英正长岩元素地球化学特征及其指示意义[J].中山大学学报(自然科学版),2023,62(03):47-56.
LAN Jun,FU Ruixin,ZHANG Peng,et al.The geochemical feature and its implication of the quartz syenite from the Xishan REE deposit in western Shandong[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(03):47-56.
兰君,付瑞鑫,张鹏等.鲁西郗山稀土矿石英正长岩元素地球化学特征及其指示意义[J].中山大学学报(自然科学版),2023,62(03):47-56. DOI: 10.13471/j.cnki.acta.snus.2022D067.
LAN Jun,FU Ruixin,ZHANG Peng,et al.The geochemical feature and its implication of the quartz syenite from the Xishan REE deposit in western Shandong[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(03):47-56. DOI: 10.13471/j.cnki.acta.snus.2022D067.
郗山矿床是山东最重要的稀土矿床,也是除内蒙古白云鄂博和四川牦牛坪以外的第三大稀土矿床。本文对控制该矿床稀土矿化的石英正长岩的元素地球化学特征进行了详细研究,限定了该岩石的源区特征和形成的构造背景;并通过与四川牦牛坪稀土矿床石英正长岩的对比,探讨了该矿床的成矿潜力。研究结果显示,郗山稀土矿床石英正长岩是典型的橄榄粗安岩系岩石,它与牦牛坪石英正长岩具有相似的地幔源区特征,但其地幔源区流体作用的强度/规模不如后者,这可能是造成郗山稀土矿化规模较小的原因之一。元素地球化学特征还显示,与超大型牦牛坪稀土矿床的石英正长岩一样,郗山石英正长岩的地幔源区受到碳酸盐化的影响,同样具有形成超大型碳酸岩型稀土矿矿床的潜力。
The Xishan REE deposit is located in the western Shandong Province, which is the third largest REE deposit in China. The deposit is genetically associated with quartz syenite. In this study, we presented detailed geochemical studies on the quartz syenite to constrain its source, geodynamic setting, and metallogenetic potentials. The quartz syenite belongs to the shoshonitic series rocks and might be generated by the partial melting of a carbonate-metasomatized mantle source during the destruction of the North China craton. Compared with the quartz syenite from the Miaoniuping REE deposit in Sichuan Province, the Xishan quartz syenite is less hydrous, which might be one of the reasons that the Xishan REE deposit has a smaller mineralization scale. Considering that both the mantle sources of the Xishan and Maoniuping REE deposits were carbonate-metasomatized, combined with the carbonatite-related REE mineralization being significant in the Maoniuping REE deposit, it is worth exploring carbonatite-related mineralization in the Xishan REE deposit further.
郗山稀土矿床石英正长岩橄榄粗安岩系岩石地幔源区华北克拉通破坏
Xishan REE depositquartz syeniteshoshoniticcarbonate-metasomatized mantledestruction of the North China craton
金振奎, 刘泽容, 石占中, 1999. 鲁西地区断裂构造类型及其形成机制[J]. 石油大学学报(自然科学版). 23(5): 1-5.
蓝廷广, 范宏瑞, 胡芳芳, 等, 2011. 山东微山稀土矿矿床成因: 来自云母 Rb-Sr 年龄、激光 Nd 同位素及流体包裹体的证据. 地球化学, 40(5): 428-442.
李建康, 袁忠信, 白鸽, 等, 2009. 山东微山稀土矿床成矿流体的演化及对成矿的制约. 矿物岩石, 29(3): 60-68.
孙金凤, 杨进辉, 2013. 华北中生代岩浆作用与去克拉通化. 岩石矿物学杂志, 32(5): 577-592.
翁强, 2022. 川西碱性岩-碳酸岩型稀土矿床形成机制[D]. 北京: 中国科学院大学.
翁强, 牛贺才, 杨武斌, 等, 2022. 川西碱性岩-碳酸岩型稀土矿床成矿模型[J]. 矿物岩石地球化学通报, 41(3): 465-473+464.
吴福元, 徐义刚, 高山, 等, 2008. 华北岩石圈减薄与克拉通破坏研究的主要学术争论[J]. 岩石学报, 24(6): 1145-1174.
英基丰, 周新华, 张宏福, 2003. 碳酸岩岩浆演化的指示性矿物-环带金云母—以山东西部雪野碳酸岩为例[J]. 岩石学报, 19(1): 113-119.
于学峰, 唐好生, 韩作振, 等, 2010. 山东郗山-龙宝山地区与碱性岩有关的稀土矿床地质特征及成因[J]. 地质学报, 84(3): 407-417.
赵国春, 孙敏, WILDE S A, 2002. 华北克拉通基底构造单元特征及早元古代拼合[J]. 中国科学: 地球科学, 32(7): 538-549.
朱日祥, 陈凌, 吴福元, 等, 2012. 华北克拉通破坏. 中国科学: 地球科学, 42(8): 1135-1159.
朱日祥, 范宏瑞, 李建威, 等, 2015. 克拉通破坏型金矿床. 中国科学: 地球科学, 45(8): 1153-1168.
ALTHERR R, TOPUZ G, SIEBEL W, et al, 2008. Geochemical and Sr-Nd-Pb isotopic characteristics of Paleocene plagioleucitites from the Eastern Pontides (NE Turkey)[J]: Lithos, 105(1/2): 149-161.
ALTUNKAYNAK S, 2007. Collision-driven slab breakoff magmatism in northwestern Anatolia, Turkey[J]. J Geol, 115(1): 63-82.
CARR MJ, FEIGENSON MD, BENNETT EA, 1990. Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central-American Arc[J]. Contrib Mineral Petrol, 105(4): 369-380.
CERVANTES P, WALLACE P J, 2003. Role of H2O in subduction - zone magmatism: New insights from melt inclusions in high-Mg basalts from central Mexico[J]. Geology, 31(3): 235-238.
CHAZOT G, MENZIES M A, HARTE B, 1996. Determination of partition coefficients between apatite, clinopyroxene, amphibole, and melt in natural spinel lherzolites from Yemen: implications for wet melting of the lithospheric mantle[J]. Geochimica Cosmochimica Acta 60(3): 423-437.
CONTICELLI S, MARCHIONNI S, ROSA D, et al, 2009. Shoshonite and sub-alkaline magmas from an ultrapotassic volcano: Sr-Nd-Pb isotope data on the Roccamonfina volcanic rocks, Roman Magmatic Province, Southern Italy[J]. Contrib Mineral Petrol, 157(1): 41-63.
HOLLIDAY J R, WILSON A J, BLEVIN P L, et al. 2002. Porphyry gold-copper mineralization in the Cadia district, eastern Lachlan Fold Belt, New South Wales, and its relationship to shoshonitic magmatism[J]. Min Dep, 37(1): 100-116.
IONOV D A, HOFMANN A W, 1995. Nb–Ta-rich mantle amphiboles and micas : Implications for subduction-related metasomatic trace element fractionations[J]. Earth Planet Sci Lett 131(3/4): 341-356.
JENNER F E, BENNETT V C, NUTMAN A P, et al, 2009. Evidence for subduction at 3.8 Ga: Geochemistry of arc-like metabasalts from the southern edge of the Isua Supracrustal Belt[J]. Chem Geol 261(1/2): 83-98.
JIA Y H, LIU Y, 2019. REE enrichment during Magmatic – Hydrothermal Processes in Carbonatite - Related REE Deposits: A Case Study of the Weishan REE Deposit, China. Minerals, 10(1): 25.
JIANG Y H, JIANG S Y, DAI B Z, et al, 2009. Middle to Late Jurassic felsic and mafic magmatism in southern Hunan Province, southeast China: Implications for a continental arc to rifting[J]. Lithos 107(3/4): 185-204.
LAN T G, FAN H R, SANTOSH M, et al, 2011a. Geochemistry and Sr–Nd–Pb–Hf isotopes of the Mesozoic Dadian alkaline intrusive complex in the Sulu orogenic belt, eastern China: Implications for crust–mantle interaction[J]. Chem Geol, 285(1/2/3/4): 97-114.
LAN T G, FAN H R, HU F F, et al, 2011b. Multiple crust-mantle interactions for the destruction of the North China Craton: Geochemical and Sr-Nd-Pb-Hf isotopic evidence from the Longbaoshan alkaline complex[J]. Lithos, 122(1/2): 87-106.
LAN T G, FAN H R, SANTOSH M, et al, 2013. Crust - mantle interaction beneath the Luxi Block, eastern North China Craton: Evidence from coexisting mantle-and crust-derived enclaves in a quartz monzonite pluton[J]. Lithos, 177: 1-16.
Le MAITRE R W, STRECKEISEN A, ZANETTIN B, et al, 2002. Igneous rocks A classification of igneous rocks and glossary of terms [M].2nd ed. Cambridge UK: Cambridge University Press.
LEEMAN W P, CARR M J, MORRIS J D, 1994. Boron geochemistry of the Central-American Volcanic Arc-constraints on the genesis of subduction-related magmas[J]. Geochimica Cosmochimica Acta 58(1): 149-168.
LI S R, SANTOSH M, 2014. Metallogeny and craton destruction: Records from the North China Craton[J]. Ore Geol Rev, 56: 376-414.
LIN P N, STERN R J, MORRIS J, et al, 1990. Nd- and Sr-isotopic compositions of lavas from the northern Mariana and southern Volcano arcs: Implications for the origin of island melts[J]. Contributions Mineral Petrol, 105(4): 381-392.
MULLER D, 2002. Gold-copper mineralization in alkaline rocks[J]. Mineralium Deposita, 37(1): 1-3.
MULLER D, GROVES D I, 1995. Potassic igneous rocks and associated gold-copper mineralization[M]. Berlin: Springer.
MULLER D, ROCK N M S, GROVES DI, 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: A pilot study[J]. Mineral Petrol, 46(4): 259-289.
NELSON D R, 1992. Isotopic characteristics of potassic rocks: Evidence for the involvement of subducted sediments in magma genesis[J]. Lithos, 28(3/4/5/6): 403-420.
PATINO L C, CARR, M J, FEIGENSON M D, 2000. Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input[J]. Contrib Mineral Petrol, 138(3): 265-283.
PECCERILLO A, MARTINOTTI G, 2006. The Western Mediterranean lamproitic magmatism: Origin and geodynamic significance[J]. Terra Nova, 18(2): 109-117.
PECCERILLO R, TAYLOR, S R, 1976. Geochemistry of Eocene calc-alkaline volcanice rocks from the Kastamonu area, Northern Turkey[J]. Contr Mineral and Petrol, 58: 63-81.
RUDNICK R L, GAO S, 2003. Composition of the continental crust[M]// Treatise on Geochemistry. Amsterdam: Elsevier, 1-64.
SILLITOE R H, 2002. Some metallogenic features of gold and copper deposits related to alkaline rocks and consequences for exploration[J]. Min Dep, 37(1): 4-13.
TURNER S, ARNAND N, LIU J, et al, 1996, Post-collision shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and source of ocean island basalts[J]. J Petrology, 37(1): 45-71.
WANG C, LIU J, ZHANG H, et al, 2019. Geochronology and mineralogy of the Weishan carbonatite in Shandong Province, Eastern China[J]. Geosci Front, 10(2): 769-785.
YANG W B, NIU H C, SHAN Q, et al, 2014. Geochemistry of primary-carbonate bearing K-rich igneous rocks in the Awulale Mountains, western Tianshan: Implications for carbon-recycling in subduction zone[J]. Geochimica Cosmochimica Acta, 143: 143-164.
ZENG G, CHEN, L H, XU X S, et al, 2010. Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China[J]. Chem Geol, 273(1/2): 35-45.
ZHENG J, O'REILLY S Y, GRIFFIN W L, et al, 2001. Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution[J]. Lithos, 57(1): 43-66.
0
浏览量
4
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构