1.中山大学大气科学学院 / 广东省气候变化与自然灾害研究重点实验室 / 南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082
2.佛山市气象局,广东 佛山 528000
崔寅平(1998年生),男;研究方向:大气数值模拟;E-mail:cuiyp3@mail2.sysu.edu.cn
樊琦(1977年生),女;研究方向:大气数值模拟;E-mail:eesfq@mail.sysu.edu.cn
纸质出版日期:2023-09-25,
网络出版日期:2023-06-16,
收稿日期:2022-08-06,
录用日期:2023-01-03
扫 描 看 全 文
崔寅平,晋银保,张娟等.一次局地辐射雾过程及其水汽来源的数值模拟[J].中山大学学报(自然科学版),2023,62(05):171-180.
CUI Yinping,JIN Yinbao,ZHANG Juan,et al.Numerical simulation of a local radiation fog process and its water vapor source[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(05):171-180.
崔寅平,晋银保,张娟等.一次局地辐射雾过程及其水汽来源的数值模拟[J].中山大学学报(自然科学版),2023,62(05):171-180. DOI: 10.13471/j.cnki.acta.snus.2022D055.
CUI Yinping,JIN Yinbao,ZHANG Juan,et al.Numerical simulation of a local radiation fog process and its water vapor source[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(05):171-180. DOI: 10.13471/j.cnki.acta.snus.2022D055.
基于WRF中尺度数值预报模式和HYSPLIT后向轨迹模式对2017年11月10~11日发生在广东省佛山市的一次局地雾天气过程及其水汽来源进行高分辨率的数值模拟研究。WRF模拟结果表明:本次雾是一次典型的辐射雾过程;晴朗夜晚地面长波辐射冷却降温使得区域范围内水汽聚集并凝结产生相变,同时夜间存在逆温层以及局地低于1 m/s的静小风促进了此次雾过程的发展;垂直方向上温度和水汽含量的变化较为一致,揭示了近地面雾层的垂直发展情况。进一步利用WRF高分辨率模拟结果驱动HYSPLIT后向轨迹模式对此次雾天气过程的水汽来源进行分析发现:除本地水汽凝结相变外,佛山市辖区内珠江流域水汽的输送对本次雾天气有促进作用。
The WRF mesoscale meteorological model and the HYSPLIT model were used to investigate a local radiation fog that occurred in Foshan from Nov 10
th
to Nov 11
th
, 2017, and its sources of water vapor. The results show this is a typical radiation fog process. During the clear night, surface long-wave radiation cooling resulted in water vapor gathering and condensing, meanwhile, temperature inversion and wind speed that lower than 1 m/s in the area promoted the development of the fog. Vertical temperature variations were highly related to water vapor concentrations, which could represent the features of vertical development during the fogging process. To analyze the sources of water vapor in this fog, high-resolution simulation results from the WRF model were utilized to drive the HYSPLIT model. It is found that in addition to the local water vapor condensation, the transport of water vapor from the Pearl River in Foshan city also promoted fogging.
WRF模式长波辐射冷却水汽条件HYSPLIT
WRF modellong wave radiation coolingwater vaporHYSPLIT model
包云轩, 丁秋冀, 袁成松, 等, 2013. 沪宁高速公路一次复杂性大雾过程的数值模拟试验[J]. 大气科学, 37(1): 124-136.
崔强, 王春明, 岳甫璐, 等, 2014.南京2013年12月一次大雾天气过程的数值模拟及诊断分析[C]//第31届中国气象学会年会. 北京.
杜亮亮, 李江萍, 陈晓燕, 等, 2012. 2001—2011年青藏高原东北边坡地带云水资源分析[J]. 干旱区研究, 29(5): 862-869.
梁爱民, 张庆红, 申红喜, 等, 2009. 北京地区一次平流雾过程的分析和数值模拟[J]. 应用气象学报, 20(5): 612-621.
马京津, 高晓清, 2006. 华北地区夏季平均水汽输送通量和轨迹的分析[J]. 高原气象, 25(5): 893-899.
濮梅娟, 李良福, 李子华, 等, 2001. 西双版纳地区雾的物理过程研究[J]. 气象科学, 21(4): 425-432.
田梦, 2019. 环渤海大雾形成的观测和模拟分析及影响机制研究[D]. 兰州: 兰州大学.
夏凡, 李昌义, 2018. 基于3种能见度方案山东地区雾天气预报试验研究[J]. 气象与环境学报, 34(3): 48-57.
夏凡, 杨晓霞, 2017. 济南一次雾过程的数值模拟试验和成因分析[J]. 气象科技, 45(1): 164-170.
张福深, 周明煜, 吕乃平, 1987. 地面辐射雾和低层云对夜间边界层影响的数值研究[J]. 大气科学, 11(2): 128-137.
张礼春, 朱彬, 耿慧, 等,2014. 南京一次持续性浓雾天气过程的边界层特征及水汽来源分析[C]//第31届中国气象学会年会. 北京.
张舒婷, 王明洁, 刘一鸣, 等, 2016. 珠江口雾过程数值模拟及生消概念模型建立[J]. 热带气象学报, 32(4): 467-476.
中国气象局,2003. 地面气象观测规范[M]. 北京: 气象出版社.
邹进上, 刘长盛, 刘文保, 等, 1982. 大气物理基础[M]. 北京: 气象出版社.
ABEL B D, RAJAGOPALAN B, RAY A J, 2022. Understanding the dominant moisture sources and pathways of summer precipitation in the southeast prairie pothole region[J]. Earth Space Sci, 9(3): e2021EA001855.
CHEN C, COTTON W R, 1983. A one-dimensional simulation of the stratocumulus-capped mixed layer[J]. Boundary-Layer Meteorol, 25(3): 289-321.
CHU Q C, WANG Q G, FENG G L, et al, 2021. Roles of water vapor sources and transport in the intraseasonal and interannual variation in the peak monsoon rainfall over East China[J]. Climate Dynamics, 57(7): 2153-2170.
DIMITROVA R, SHARMA A, FERNANDO H J S, et al, 2021. Simulations of coastal fog in the Canadian Atlantic with the weather research and forecasting model[J]. Boundary-Layer Meteorol, 181(2): 443-472.
FISHER E L, CAPLAN P, 1963. An experiment in ghenumerical prediction of fog and stratus[J]. Journal of the Atmosphere Sciences, 20(5): 425-437.
GUO J, XU J, XU X, 2021. An observational and modeling study of a sea fog event over the yellow and East China Seas on 17 March 2014[J]. Trop Cyclone Res Rev,10(3): 182-190.
KUTTY S G, DIMRI A P, GULTEPE I, 2021. Physical processes affecting radiation fog based on WRF simulations and validation[J]. Pure Appl Geophys, 178(10): 4265-4288.
SKAMAROCK W C, KLEMP J B, DUDHIA J, et al, 2019. A description of the advanced research WRF model version 4[P]. National Center for Atmospheric Research.
STEIN A F, DRAXLER R R, ROLPH G D, et al, 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system[J]. Bull Am Meteorol Soc, 96(12): 2059-2077.
ZHANG S, LIU B, REN G, et al, 2021. Moisture sources and paths associated with warm-season precipitation over the Sichuan Basin in southwestern China: Climatology and interannual variability[J]. J Hydrol, 603: 127019.
ZHOU B, DU J, 2010. Fog prediction from a multimodel mesoscale ensemble prediction system[J]. Weather Forecast, 25: 303-322.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构