1.中山大学地球科学与工程学院,广东 珠海 519082
2.广东省地球动力作用与地质灾害重点实验室,广东 珠海 519082
3.南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082
范财源(1999年生),男;研究方向:岩石破坏过程及声发射;E-mail:fancy@mail2.sysu.edu.cn
刘金锋(1985年生),男;研究方向:高温高压岩石力学;E-mail:liujinf5@mail.sysu.edu.cn
纸质出版日期:2023-05-25,
网络出版日期:2023-02-27,
收稿日期:2022-07-15,
录用日期:2022-09-05
扫 描 看 全 文
范财源,孟范宝,刘金锋.单轴压缩作用下岩石脆性破裂机制的声发射识别[J].中山大学学报(自然科学版),2023,62(03):14-24.
FAN Caiyuan,MENG Fanbao,LIU Jinfeng.Characterization of brittle failure modes of rocks under uniaxial compression using acoustic emission[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(03):14-24.
范财源,孟范宝,刘金锋.单轴压缩作用下岩石脆性破裂机制的声发射识别[J].中山大学学报(自然科学版),2023,62(03):14-24. DOI: 10.13471/j.cnki.acta.snus.2022D047.
FAN Caiyuan,MENG Fanbao,LIU Jinfeng.Characterization of brittle failure modes of rocks under uniaxial compression using acoustic emission[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(03):14-24. DOI: 10.13471/j.cnki.acta.snus.2022D047.
监测和识别岩石变形过程的微破裂发育,有助于理解其脆性破裂机制以及预防工程灾害。基于声发射监测技术,对比分析了砂岩和花岗岩的单轴压缩破裂过程。基于声发射RA-AF裂纹分类准则,提出了裂纹分类参数累计曲线法,依据累计曲线斜率
k
值变化(-1~1)可推断出岩石破裂过程中张拉裂纹(
k=
1)和剪切裂纹(
k=
-1)的发育阶段,进而识别脆性破裂机制。宏观破裂特征显示,砂岩发生单斜面剪切破坏,花岗岩发生劈裂破坏。声发射撞击数、
b
值等特征参数分析表明,两种岩石脆性破裂过程中微破裂释放的弹性能的频数与能级特征相似,无法区别二者破裂机制。然而,累计曲线法结果显示,砂岩存在裂纹分类参数累计和线性增长(
k
=0.66)、非线性增长(
k
降低至0)和非线性降低(
k
降低至-0.37)等3个阶段,而花岗岩仅存在线性增长(
k=
0.83)和非线性增长(
k
降低至约0.5)两个阶段。微观结构显示,破坏砂岩的剪切带由翼型张拉裂纹组成,暗示张拉裂纹发育先于剪切裂纹发育。综合分析表明,张拉裂纹发育首先主控砂岩的变形,随后剪切裂纹发育增强,直至第3阶段剪切裂纹发育主控并导致剪切破坏;而花岗岩在变形第2阶段受张拉裂纹发育主控并发生劈裂破坏。基于声发射监测技术,裂纹分类参数累计曲线法有效识别了单轴压缩条件下的两种基本破裂模式,为识别复杂应力条件下岩石的脆性破裂过程和机制提供了简单途径。
Monitoring and distinguishing the development of microcracks in deformed rocks are helpful to understand the likely brittle failure mechanisms, which is essential for preventing rock engineering disasters. In this study, uniaxial compression experiments were performed on sandstone and granite samples to study the failure processes inversed by acoustic emission (AE) monitoring. Macroscopically, the sandstone samples exhibited a shear faulting mode while the granite samples an axial splitting mode. These two modes, however, cannot be clearly distinguished using the traditional AE methods via hits and the
b
value, as these parameters can reflect the frequency and energy level characteristics of elastic energy released during the cracking process only. Therefore, we propose a crack cumulative summation curve method, following the RA-AF crack classification method, which can successfully inverse and distinguish the possible different microcracking processes in deformed rock from the pure tensile microcrack development (
k=
1) to the pure shear microcrack development (
k
=-1) according to the variance of curve slope
k
value (i.e., -1~1). Inversed results show that during deformation to brittle failure, the tensile microcracks development first dominates the deformation of sandstone (i.e.,
k
=0.66), followed by a transition between the development of the tensile and shear microcracks (i.e.,
k
decreased to 0), and finally by strongly developed shear microcracks (i.e.,
k
decreased to -0.37 from 0) dominating shear faulting. In contrast, the granite sample showed a macroscopic axial splitting mode, as no strong development of shear microcracks was observed, i.e.,
k
remains greater than 0, decreasing to 0.5 from 0.83. The combined effects suggest these two failure modes can be clearly distinguished by strongly developed shear microcracks in rock near failure. Microscopic observation performed on the failure sandstone clearly illustrated wing tensile cracks in the shear fracture zone. This supports our inversed results that macro shear fracturing of sandstone was formed upon the initiation of the tensile microcracks, followed by the development of the shear microcracks. This suggests AE monitoring using our proposed crack cumulative summation curve method can properly distinguish the development of microcracks and accordingly failure modes in the deformed rocks, and may be used for further study on understanding the failure process of rocks upon complex loading conditions.
声发射微裂纹发育裂纹类型破裂过程破裂机制
acoustic emission (AE)microcracks developmentcrack modefailure processfailure mechanism
艾婷, 张茹, 刘建锋, 等, 2011. 三轴压缩煤岩破裂过程中声发射时空演化规律[J]. 煤炭学报, 36(12): 2048-2057.
储超群, 吴顺川, 曹振生, 等, 2021. 基于声发射技术的花岗岩破裂特征试验研究[J]. 中南大学学报(自然科学版), 52(8): 2919-2932.
李浩然, 杨春和, 刘玉刚, 等, 2014. 花岗岩破裂过程中声波与声发射变化特征试验研究[J]. 岩土工程学报, 36(10): 1915-1923.
李天斌, 陈子全, 陈国庆, 等, 2015. 不同含水率作用下砂岩的能量机制研究[J]. 岩土力学, 36(S2): 229-236.
刘泉声, 魏莱, 雷广峰, 等, 2018. 砂岩裂纹起裂损伤强度及脆性参数演化试验研究[J]. 岩土工程学报, 40(10): 1782-1789.
苏承东, 高保彬, 南华, 等, 2009. 不同应力路径下煤样变形破坏过程声发射特征的试验研究[J]. 岩石力学与工程学报, 28(4): 757-766.
王春来, 侯晓琳, 李海涛, 等, 2019. 单轴压缩砂岩细观裂纹动态演化特征试验研究[J]. 岩土工程学报, 41(11): 2120-2125.
伍法权, 乔磊, 管圣功, 等, 2021. 小尺寸岩样单轴压缩试验尺寸效应研究[J]. 岩石力学与工程学报, 40(5): 865-873.
肖洪天, 周维垣, 2001. 脆性岩石变形与破坏的细观力学模型研究[J]. 岩石力学与工程学报, 20(2): 151-155.
张艳博, 梁鹏, 田宝柱, 等, 2016. 花岗岩灾变声发射信号多参量耦合分析及主破裂前兆特征试验研究[J]. 岩石力学与工程学报, 35(11): 2248-2258.
中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2013. GB/T 50266—2013 工程岩体试验方法标准[M]. 北京: 中国计划出版社.
邹才能, 朱如凯, 吴松涛, 等, 2012. 常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J]. 石油学报, 33(2): 173-187.
AGGELIS D G, SOULIOTI D V, SAPOURIDIS N, et al., 2011. Acoustic emission characterization of the fracture process in fibre reinforced concrete[J]. Construction and Building Materials, 25(11): 4126-4131.
BASU A, MISHRA D A, ROYCHOWDHURY K, 2013. Rock failure modes under uniaxial compression, Brazilian, and point load tests[J]. Bulletin of Engineering Geology and the Environment, 72(3): 457-475.
BAŽANT Z P, XIANG Y, 1997. Size Effect in Compression Fracture: Splitting Crack Band Propagation[J]. Journal of Engineering Mechanics, 123(2): 162-172.
DAVIDSEN J, GOEBEL T, KWIATEK G, et al., 2021. What controls the presence and characteristics of aftershocks in rock fracture in the lab?[J]. Journal of Geophysical Research: Solid Earth, 126(10): e2021JB022539.
DONG L, CHEN Y, SUN D, et al., 2021. Implications for rock instability precursors and principal stress direction from rock acoustic experiments[J]. International Journal of Mining Science and Technology, 31(5): 789-798.
DU K, LI X, TAO M, et al., 2020. Experimental study on acoustic emission (AE) characteristics and crack classification during rock fracture in several basic lab tests[J]. International Journal of Rock Mechanics and Mining Sciences, 133: 104411.
FAKHIMI A, HEMAMI B, 2015. Axial splitting of rocks under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 79: 124-134.
FORTIN J, STANCHITS S, DRESEN G, et al., 2009. Acoustic emissions monitoring during inelastic deformation of porous sandstone: Comparison of three modes of deformation[J]. Pure and Applied Geophysics, 166(5): 823-841.
HEALY D, JONES R R, HOLDSWORTH R E, 2006. Three-dimensional brittle shear fracturing by tensile crack interaction[J]. Nature, 439(7072): 64-67.
HOLZHAUSEN G R, JOHNSON A M, 1979. Analyses of longitudinal splitting of uniaxially compressed rock cylinders[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16(3): 163-177.
HORII H, NEMAT-NASSER S, 1985. Compression-induced microcrack growth in brittle solids: Axial splitting and shear failure[J]. Journal of Geophysical Research: Solid Earth, 90(B4): 3105-3125.
HUANG Z, GU Q, WU Y, et al., 2021. Effects of confining pressure on acoustic emission and failure characteristics of sandstone[J]. International Journal of Mining Science and Technology, 31(5): 963-974.
LEI X L, KUSUNOSE K, RAO M V M S, et al., 2000. Quasi-static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring[J]. Journal of Geophysical Research: Solid Earth, 105(B3): 6127-6139.
LEI X L, MASUDA K, NISHIZAWA O, et al., 2004. Detailed analysis of acoustic emission activity during catastrophic fracture of faults in rock[J]. Journal of Structural Geology, 26(2): 247-258.
LI G, LIANG Z Z, TANG C A, 2015. Morphologic interpretation of rock failure mechanisms under uniaxial compression based on 3D multiscale high-resolution numerical modeling[J]. Rock Mechanics and Rock Engineering, 48(6): 2235-2262.
LOCKNER D A, 1993. The role of acoustic emission in the study of rock fracture[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(7): 883-899.
LOCKNER D A, BYERLEE J D, KUKSENKO V, et al., 1991. Quasi-static fault growth and shear fracture energy in granite[J]. Nature, 350(6313): 39-42.
MAHABADI O K, TATONE B S A, GRASSELLI G, 2014. Influence of microscale heterogeneity and microstructure on the tensile behavior of crystalline rocks[J]. Journal of Geophysical Research: Solid Earth, 119(7): 5324-5341.
MENG F, GE H, YAN W, et al., 2016. Effect of saturated fluid on the failure mode of brittle gas shale[J]. Journal of Natural Gas Science and Engineering, 35: 624-636.
MUÑOZ-IBÁÑEZ A, DELGADO-MARTÍN J, HERBÓN-PENABAD M, et al., 2021. Acoustic emission monitoring of mode I fracture toughness tests on sandstone rocks[J]. Journal of Petroleum Science and Engineering, 205: 108906.
OHNO K, OHTSU M, 2010. Crack classification in concrete based on acoustic emission[J]. Construction and Building Materials, 24(12): 2339-2346.
OHTSU M, 1991. Simplified moment tensor analysis and unified decomposition of acoustic emission source: Application to in situ hydrofracturing test[J]. Journal of Geophysical Research: Solid Earth, 96(B4): 6211-6221.
PENG S, JOHNSON A M, 1972. Crack growth and faulting in cylindrical specimens of chelmsford granite[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 9(1): 37-86.
SCHOLZ C H, 1968a. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes[J]. Bulletin of the Seismological Society of America, 58(1): 399-415.
SCHOLZ C H, 1968b. Microfracturing and the inelastic deformation of rock in compression[J]. Journal of Geophysical Research (1896-1977), 73(4): 1417-1432.
SHI Y, BOLT B A, 1982. The standard error of the magnitude-frequency b value[J]. Bulletin of the Seismological Society of America, 72(5): 1677-1687.
SZWEDZICKI T, 2007. A hypothesis on modes of failure of rock samples tested in uniaxial compression[J]. Rock Mechanics and Rock Engineering, 40(1): 97-104.
TOWNEND E, THOMPSON B D, BENSON P M, et al., 2008. Imaging compaction band propagation in Diemelstadt sandstone using acoustic emission locations[J]. Geophysical Research Letters, 35(15): L15301.
TRIANTIS D, 2018. Acoustic emission monitoring of marble specimens under uniaxial compression. Precursor phenomena in the near-failure phase[J]. Procedia Structural Integrity, 10: 11-17.
WANG M, TAN C, MENG J, et al., 2017. Crack classification and evolution in anisotropic shale during cyclic loading tests by acoustic emission[J]. Journal of Geophysics and Engineering, 14(4): 930-938.
WONG T F, BAUD P, 2012. The brittle-ductile transition in porous rock: A review[J]. Journal of Structural Geology, 44: 25-53.
WU S, GE H, WANG X, et al., 2017. Shale failure processes and spatial distribution of fractures obtained by AE monitoring[J]. Journal of Natural Gas Science and Engineering, 41: 82-92.
YAO Q, CHEN T, TANG C, et al., 2019. Influence of moisture on crack propagation in coal and its failure modes[J]. Engineering Geology, 258: 105156.
YIN P F, YANG S Q, 2018. Experimental investigation of the strength and failure behavior of layered sandstone under uniaxial compression and Brazilian testing[J]. Acta Geophysica, 66(4): 585-605.
ZHANG Y, ZHAO G F, 2019. A global review of deep geothermal energy exploration: from a view of rock mechanics and engineering[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6(1): 4.
ZHANG Z H, DENG J H, 2020. A new method for determining the crack classification criterion in acoustic emission parameter analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 130: 104323.
ZHAO K, YANG D, ZENG P, et al., 2021. Effect of water content on the failure pattern and acoustic emission characteristics of red sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 142: 104709.
ZHU J, DENG J, CHEN F, et al., 2022. Failure analysis of water-bearing rock under direct tension using acoustic emission[J]. Engineering Geology, 299: 106541.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构