1.中山大学地球科学与工程学院,广东 珠海 519082
2.南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082
史天根(1999年生),男; 研究方向:钙质砂特性; E-mail: shitg@mail2.sysu.edu.cn
高燕(1984年生),女;研究方向:土的宏微观结构性、智能监测; E-mail:gaoyan25@mail.sysu.edu.cn
纸质出版日期:2023-01-25,
网络出版日期:2022-06-21,
收稿日期:2022-01-19,
录用日期:2022-03-14
扫 描 看 全 文
史天根,高燕,李文龙.侧限条件下钙质砂颗粒破碎与蠕变特征[J].中山大学学报(自然科学版),2023,62(01):34-43.
SHI Tiangen,GAO Yan,LI Wenlong.Particle breakage and creep characteristics of calcareous sand with lateral confinement[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(01):34-43.
史天根,高燕,李文龙.侧限条件下钙质砂颗粒破碎与蠕变特征[J].中山大学学报(自然科学版),2023,62(01):34-43. DOI: 10.13471/j.cnki.acta.snus.2022D015.
SHI Tiangen,GAO Yan,LI Wenlong.Particle breakage and creep characteristics of calcareous sand with lateral confinement[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(01):34-43. DOI: 10.13471/j.cnki.acta.snus.2022D015.
通过侧限条件下的蠕变试验,基于近景摄影测量技术对试验过程的动态捕捉,探讨了钙质砂的颗粒破碎与蠕变特征。侧限条件下,钙质砂的蠕变随时间的增加而增加,蠕变变形与时间关系符合Burgers模型,蠕变变形可分为减速蠕变阶段和稳态蠕变阶段,即,蠕变速率随时间增加先减小,后稳定。钙质砂的蠕变特性受应力条件和粒径影响。轴向应力越大,蠕变速率和蠕变量越大;低应力下,蠕变量随粒径增大而减小;高应力下,受颗粒破碎的影响,钙质砂的蠕变以及蠕变速率均随粒径增大而增大。与硅质砂相比,钙质砂的蠕变在较低应力(≤ 0.1 MPa)时,由于钙质砂具有多棱角特性,颗粒间嵌固力较大,限制颗粒间位移产生,蠕变较小;随着应力增大,钙质砂开始产生颗粒破碎,增加了钙质砂试样变形,蠕变逐渐显著并超过硅质砂的蠕变。钙质砂的颗粒破碎特性随粒径和应力增大而增大,其中粒径>5 mm的试样在竖向应力0.7 MPa附近开始破碎;蠕变过程中的试样变形由完整颗粒和破碎后的颗粒沿裂隙和内外孔隙移动提供。
Based on the creep tests with lateral confinement and the close-range photogrammetry technology
the characteristics of particle breakage and creep of calcareous sand are continually captured and explored in this study. It is found that the creep deformation of calcareous sand increases with time which satisfies the Burgers model. The evolution of creep can be divided into two stages
the primary creep stage with the creep rate decreasing with time and followed by the steady creep stage with a relatively stable creep rate. The creep characteristics of calcareous sand are affected by stress conditions and particle breakage. The greater the axial creep stress
the greater the creep deformation and creep rate. Under low stress
the creep strain decreases with the particle size increasing due to the interlocking between the irregular particles; under relatively high stress
creep deformation and creep rate increase with the particle size increasing on account of the influence of particle crushing. Under the low stress (≤0.1 MPa)
because of the interparticle locking in calcareous sand with irregular particle shape
the interparticle rearrangement is harder to occur
hence a smaller creep deformation is obtained for calcareous sand compared with siliceous sand. However
with the increase of stress
particles of calcareous sand begin to crush
and the creep deformation of calcareous sand increases and becomes more significant than that of siliceous sand. The particle crushing of calcareous sand increases with the rising of particle size and stress. The samples with particle sizes larger than 5 mm begin to break around 0.7 MPa of the vertical stress
and the creep deformation is provided by the rearrangement of intact particles and broken particles along cracks and pores.
钙质砂颗粒破碎蠕变Burgers模型近景摄影测量技术
calcareous sandparticle breakagecreepBurgers modelclose-range photogrammetry
SALEM M, ELMAMLOUK H, AGAIBY S. Static and cyclic behavior of North Coast calcareous sand in Egypt [J]. Soil Dynamics and Earthquake Engineering, 2013, 55:83-91.
KARGAR S, SALEHZADEH H, SHAHNAZARI H. Post-cyclic behavior of carbonate sand of the northern coast of the Persian Gulf[J]. Marine Georesources & Geotechnology, 2016, 34(2):169-180.
SHAHNAZARI H,SALEHZADEH H, REZVANI R,et al. The effect of shape and stiffness of originally different marine soil grains on their contractive and dilative behavior[J]. KSCE Journal of Civil Engineering, 2014, 18(4):975-983.
WANG X, WANG X Z, ZHU C Q, et al. Shear tests of interfaces between calcareous sand and steel [J]. Marine Georesources & Geotechnology,2019,37(9): 1095-1104.
WANG Y, REN Y, YANG Q. Experimental study on the hydraulic conductivity of calcareous sand in South China Sea [J]. Marine Georesources & Geotechnology, 2017, 35(7): 1037-1047.
COOP M R , SORENSEN K K , FREITAS T B , et al. Particle breakage during shearing of a carbonate sand[J]. Geotechnique, 2004, 54(3):157-163.
GIANG P HHA, IMPE P OVAN, IMPE W FVAN, et al. Small-strain shear modulus of calcareous sand and its dependence on particle characteristics and gradation [J]. Soil Dynamics and Earthquake Engineering, 2017, 100:371-379.
HE S H, SHAN H F, XIA T D, et al. The effect of temperature on the drained shear behavior of calcareous sand [J]. Acta Geotechnica, 2021, 16(2): 613-633.
CHOO H, KWON M, TOUITI L, et al. Maximum shear modulus of calcareous sand in Dejebel Dahar, Tunisia and its dependency on applied stress[C/OL]. E3S Web of Conferences, 2019, 92:04007. DOI:10.1051/e3sconf/20199204007http://dx.doi.org/10.1051/e3sconf/20199204007.
RASOULI M, MORADI M, GHALANDARZADEH A. Effects of initial static shear stress orientation on cyclic behavior of calcareous sand[J]. Marine Georesources & Geotechnology, 2021, 39(5): 554-568.
WANG G, ZHA J J. Particle breakage evolution during cyclic triaxial shearing of a carbonate sand[J]. Soil Dynamics and Earthquake Engineering, 2020, 138:106326.
LV Y R, LIU J G, XIONG Z M. One-dimensional dynamic compressive behavior of dry calcareous sand at high strain rates [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(1): 192-201.
DING Z, HE S H, SUN Y F, et al. Comparative study on cyclic behavior of marine calcareous sand and terrigenous siliceous sand for transportation infrastructure applications[J]. Construction and Building Materials, 2021, 283(1):122740.
KUANG D M, LONG Z L, GUO R Q, et al. Experimental and numerical investigation on size effect on crushing behaviors of single calcareous sand particles [J]. Marine Georesources & Geotechnology, 2021, 39(5): 543-553.
叶剑红, 曹梦, 李刚. 中国南海吹填岛礁原状钙质砂蠕变特征初探 [J]. 岩石力学与工程学报, 2019, 38(6): 1242-1251.
WANG Y S, MA L J, WANG M Y, et al. A creep constitutive model incorporating deformation mechanisms for crushable calcareous sand [J]. Arabian Journal of Geosciences, 2018, 11(20): 623.
CHEN B, CHAO D J, WU W J, et al. Study on creep mechanism of coral sand based on particle breakage evolution law[J]. Journal of Vibroengineering, 2019, 21(4): 1201-1214.
LIU H B, ZENG K F, ZOU Y. Particle breakage of calcareous sand and its correlation with input energy[J]. International Journal of Geomechanics, 2020, 20(2): 04019151.
CHOO H, KWON M, TOUITI L, et al. Creep of calcareous sand in Tunisia: Effect of particle breakage at low stress level [J]. International Journal of Geo-Engineering, 2020, 11(1): 16.
LADE P V, LIGGIO C D, NAM J. Strain rate, creep, and stress drop-creep experiments on crushed coral sand[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2009, 135(7):941-953.
廖仁国. 饱和珊瑚砂蠕变及渗透性演化规律三轴试验研究 [D]. 泉州:华侨大学, 2020.
曹梦, 叶剑红. 中国南海钙质砂蠕变-应力-时间四参数数学模型 [J]. 岩土力学, 2019, 40(5): 1771-1777.
杨珂, 韩超, 刘校麟. 分级加卸载下砂岩蠕变试验及模型研究 [J]. 长江科学院院报, 2021, 38(3):97-102+109.
李良权, 王伟. 基于Burgers模型的流变损伤本构模型 [J]. 三峡大学学报(自然科学版), 2009, 31(5): 26-28+41.
钱玉林, 糜长林, 王桦, 等. 基于Burgers模型的软黏土流变特性分析[J]. 路基工程, 2016(2): 14-17+49.
王威, 杨文豪, 杨成忠,等. 基于Burgers模型铁路路基长期沉降的预测分析 [J]. 铁道学报, 2020, 42(12): 142-149.
张庆建, 王鹏程, 赵永, 等. 基于Burgers模型下泥岩三轴蠕变参数的辨识 [J]. 水利水电工程设计, 2020, 39(1): 50-52.
杨超, 戴国亮, 龚维明, 等. 望江淤泥质粉质黏土蠕变特性及模型研究 [J]. 地下空间与工程学报, 2015, 11(增刊2): 558-563.
SUN Y F,CHEN C. Fractional order creep model for coral sand[J].Mechanics of Time-Dependent Materials, 2019, 23(4) : 465-476.
晁代杰. 基于颗粒破碎演化规律的钙质砂蠕变特性试验研究 [D]. 湘潭:湘潭大学, 2019.
陈佳敏. 考虑颗粒破碎的钙质砂一维蠕变特性及方程 [D].湘潭:湘潭大学, 2020.
张小燕, 蔡燕燕, 王振波, 等. 珊瑚砂高压力下一维蠕变分形破碎及颗粒形状分析 [J]. 岩土力学, 2018, 39(5): 1573-1580.
LV Y, LI F, LIU Y, et al. Comparative study of coral sand and silica sand in creep under general stress states[J]. Canadian Geotechnical Journal,2017,54(11): 1601-1611.
LIU S, WANG J, KWOK C Y. DEM simulation of creep in one-dimensional compression of crushable sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(10): 04019060.
李小梅, 王芳, 韩林, 等. 珊瑚砂蠕变特性的试验研究 [J]. 岩土工程学报, 2020, 42(11): 2124-2130.
KARIMPOUR H, LADE P V. Time effects relate to crushing in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(9):1209-1219.
KARIMPOUR H, LADE P V. Creep behavior in Virginia Beach sand [J]. Canadian Geotechnical Journal, 2013, 50(11): 1159-1178.
EDWARD A, DIJKSTRA J, ROUBIN E, et al. A peek into the origin of creep in sand[J]. Granular Matter, 2019, 21(1): 1-8.
袁泉, 李文龙, 高燕, 等. 钙质砂颗粒特征及其对压缩性影响的试验研究 [J]. 水力发电学报, 2020, 39(2): 32-43.
YU J Y, GAO Y, LI W L, et al. The characteristics of internal and accumulated pores of calcareous sand[C]// IOP Conference Series: Earth and Environmental Science, 2021, 787(1): 012126. DOI:10.1088/1755-1315/787/1/012126http://dx.doi.org/10.1088/1755-1315/787/1/012126.
COLLIAT-DANGUS J L, DESRUES J, FORAY P. Triaxial testing of granular soil under elevated cell pressure[M] // DONAGHE R T,et al, eds. Advanced trialxial testing of soil and rock. Philadelphia:America Standard for Testing and Materials,1988.
AUGUSTESEN A, LIINGAARD M, LADE P V. Evaluation of time-dependent behavior of soils[J]. International Journal of Geomechanics, 2004,4(3): 137-156.
LADE P V,LIU C T. Experimental study of drained creep behavior of sand[J]. Journal of Engineering Mechanics, 1998, 124(8):912-920.
MURAYAMA S,MICHIHIRO K,SAKAGAMI T. Creep characteristics of sands[J]. Soils and Foundations,1984,24(2):1-15.
HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192.
LEES G, KENNEDY C K.Quality, shape and degradation of aggregates[J].Quarterly Journal of Engineering Geology & Hydrogeology, 1975, 8(3):193-209.
DAOUADJI A, HICHER P Y. An enhanced constitutive model for crushable granular materials[J].International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(6): 555-580.
MAYORAZ F, VULLIET L, LALOUI L. Attrition and particle breakage under monotonic and cyclic loading [J]. Comptes Rendus Mécanique, 2006, 334(1): 1-7.
0
浏览量
2
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构