1.中山大学大气科学学院 / 广东省气候变化与自然灾害研究重点试验室,广东 珠海 519082
2.中国民用航空中南地区空中交通管理局,广东 广州 510403
3.南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082
4.广东省佛山市南海区气象局,广东 佛山 528200
邹宛彤(1991年生),女;研究方向:中尺度气象学;E-mail:zouwt6@mail2.sysu.edu.cn
李江南(1968年生),男;研究方向:中尺度气象学;E-mail:essljn@mail.sysu.edu.cn
纸质出版日期:2024-01-25,
网络出版日期:2023-12-18,
收稿日期:2022-01-06,
录用日期:2022-03-10
扫 描 看 全 文
邹宛彤,李江南,潘心顺等.一次华南飑线的观测分析和数值模拟研究[J].中山大学学报(自然科学版)(中英文),2024,63(01):24-33.
ZOU Wantong,LI Jiangnan,PAN Xinshun,et al.Observation and numerical simulation of a squall line over South China[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(01):24-33.
邹宛彤,李江南,潘心顺等.一次华南飑线的观测分析和数值模拟研究[J].中山大学学报(自然科学版)(中英文),2024,63(01):24-33. DOI: 10.13471/j.cnki.acta.snus.2022D013.
ZOU Wantong,LI Jiangnan,PAN Xinshun,et al.Observation and numerical simulation of a squall line over South China[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(01):24-33. DOI: 10.13471/j.cnki.acta.snus.2022D013.
利用多种气象观测资料和高分辨率的数值模拟结果,对2020年5月11日华南地区一次飑线的初生、增强、成熟和衰亡等4个阶段的对流组织特征和模态的演变及机理进行了分析。结果表明:该飑线发生于高空急流入口右侧的高空辐散区,伴随着南支槽的加深东移,低层暖湿平流以及地面的中尺度辐合线为其提供了有利的水汽、热力和抬升触发条件。初始阶段,飑线呈断线型发展,在较大的环境热力条件下具有中到强的对流有效位能和最大的对流抑制。成熟期形成拖尾层状云型飑线,低层风切变和冷池强度逐渐达到平衡状态。在衰亡阶段,飑线的组织模态发生转变,其中环境热力条件是后向新生型对流单体发生的主要原因,且低层不同的水汽和风切变条件也对模态的变异存在一定作用。在华南地区,以断线型模态生成拖尾层状云型模态的飑线所需的对流有效位能更高,且飑线的维持也需要更强的热力条件。对流有效位能、对流抑制能量、粗理查森数、风暴相对螺旋度等在对流单体形成的种类和组织模态方面均有一定的指示意义。
Based on meteorological observation data and high-resolution numerical simulation results
the evolution and mechanism of convective organization and modes in a squall line over South China on May 11
2020
were analyzed in four stages: nascent stage
enhanced stage
mature stage
and decay stage. The results show that the squall line occurred in the strong divergence zone of the upper jet stream. With the deepening and eastward moving of the south branch of the trough
the warm and wet advection in the low layer and mesoscale convergence line on the ground provided favorable conditions of water vapor
heat
and uplift triggering. In the nascent stage
the squall developed in a manner of Broken Lines with medium to strong convective available potential energy and maximum convective inhibition
in the environment of the maximum thermal condition. In the mature stage
a trailing stratiform squall was formed
and the low-level wind shear and cold pool intensity gradually reached a balanced state. During the decay stage
the phase mode of the squall line changed
mainly affected by the thermal condition caused Back Building mode convective cells
and also by different water vapor and wind shear conditions in the lower layer. In South China
it requires high convective effective potential energy to generate a squall line of stratiform cloud mode with trailing tail strong thermal conditions to maintain the squall line. The convective available potential energy
convective inhibition
Bulk Richardson number
and storm-relative helicity can indicate the type and structure mode of convective monomer formation.
华南飑线数值模拟组织模态后向新生型
South China squall linenumerical simulationorganizational modeBack-Building mode
陈明轩,王迎春, 2012. 低层垂直风切变和冷池相互作用影响华北地区一次飑线过程发展维持的数值模拟[J]. 气象学报,70(3):371-386.
陈涛, 代刊, 张芳华, 2013. 一次华北飑线天气过程中环境条件与对流发展机制研究[J]. 气象, 39(8):945-954.
丁一汇,李鸿洲,章名立,等,1992. 我国飑线发生条件的研究[J]. 大气科学, 6(1):18-28.
方翀, 林隐静, 曹艳察, 等, 2017. 华南地区西风带飑线和台风飑线环境场特征统计对比分析[J]. 热带气象学报, 33(6): 965-974.
康兆萍, 林永辉, 2017. 华南一次飑线过程线状对流模态变异机理研究[J]. 大气科学学报, 40(5): 631-640.
李娜, 冉令坤, 高守亭, 2013. 华东地区一次飑线过程的数值模拟与诊断分析[J]. 大气科学, 37(3):595-608
李文娟,俞小鼎,滕代高,等, 2021. 中国江南—华南地区一次强飑线天气过程位涡诊断分析[J]. 气象与环境学报,37(6):1-10.
孙虎林, 罗亚丽, 张人禾, 等, 2011.2009年6月3~4日黄淮地区强飑线成熟阶段特征分析[J]. 大气科学, 35(1): 105-120.
张哲, 周玉淑, 高守亭, 2018. 一次辽东湾飑线过程的观测与数值模拟分析[J]. 大气科学, 42(5): 1157-1174.
郑永光, 陶祖钰, 俞小鼎, 2017. 强对流天气预报的一些基本问题[J]. 气象, 43(6): 641-652.
BLUESTEIN H B, JAIN M H. 1985. Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring[J]. J Atmos Sci, 42:1711-1732.
JrHOUZE R A,1977. Structure and dynamics of a tropical squall-line system[J]. Mon Wea Rev, 105:1540-1567.
JOHNSON R H, HAMILTON P J, 1988. The relationship of surface pressure features to the precipitation and airflow structure of an intense mid-latitude squall line[J]. Mon Wea Rev,116 (7):1444-1473.
MENG Z Y,YAN D C,ZHANG Y J, 2013. General features of squall lines in East China[J]. Mon Wea Rev,141(5):1629-1647.
MONCRIEFF M W, 1978. The dynamical structure of two-dimensional steady convection in constant vertical shear[J]. Quart J Royal Meteoro Soc,104(441):543-568.
MONCRIEFF M W, MILLER M J. 1976. The dynamics and simulation of tropical cumulonimbus and squall-lines[J]. Quart J Royal Meteoro Soc,102(432):373-397.
NEWTON C W,1950. Structure and mechanism of the prefrontal squall line: A case study[J]. J Atmos Sci, 7(3):210-222.
OGURA Y, LIOU M L, 1980. The structure of a midlatitude squall line: A case study[J]. J Amos Sci, 37(3):553-567.
PARKER M D, JOHNSON R H, 2000. Organizational modes of midlatitude mesoscale convective systems[J] Mon Wea Rev, 128(10): 3413-3436.
RASMUSSEN E N, RUTLEDGE S A, 1993. Evolution of quasi-two-dimensional squall lines. Part I: Kinematic and reflectivity structure [J]. J Atmos Sci, 50(16):2584-2606.
ROTUNNO R, KLEMP J B,WEISMAN M L, 1988. A theory for strong, long-lived squall lines[J]. J Atmos Sci, 45(3):463-485.
WEISMAN M L, 1992. The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems[J]. J Atmos Sci, 49(19):1826-1847.
WEISMAN M L,1993. The genesis of severe long-lived bow echoes[J]. J Atmos Sci, 50(4): 645-670.
0
浏览量
9
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构