1.中山大学大气科学学院 / 季风与环境研究中心 / 广东省气候变化与自然灾害重点实验室, 广东 珠海 519082
2.南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082
周明颉(1997年生),男;研究方向:热带大气环流;E-mail:zhoumj7@mail2.sysu.edu.cn
简茂球(1965年生),男;研究方向:季风与海-气、陆-气相互作用,热带大气环流,区域气候变化,能量与水分循环;E-mail:eesjmq@mail.sysu.edu.cn
纸质出版日期:2023-01-25,
网络出版日期:2022-09-20,
收稿日期:2022-03-07,
录用日期:2022-04-21
扫 描 看 全 文
周明颉,简茂球.热带印度洋及周边海温对ENSO响应的年代际变化[J].中山大学学报(自然科学版),2023,62(01):64-74.
ZHOU Mingjie,JIAN Maoqiu.Interdecadal changes of the response of sea surface temperature in the tropical Indian Ocean and its surrounding oceans to ENSO events[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(01):64-74.
周明颉,简茂球.热带印度洋及周边海温对ENSO响应的年代际变化[J].中山大学学报(自然科学版),2023,62(01):64-74. DOI: 10.13471/j.cnki.acta.snus.2022D012.
ZHOU Mingjie,JIAN Maoqiu.Interdecadal changes of the response of sea surface temperature in the tropical Indian Ocean and its surrounding oceans to ENSO events[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(01):64-74. DOI: 10.13471/j.cnki.acta.snus.2022D012.
基于1958—2018年的海温与大气环流再分析资料,分析了热带印度洋及邻近海域海温对厄尔尼诺-南方涛动(ENSO)的响应特征及其年代际变化,并进一步探讨了ENSO影响次年夏季副热带西北太平洋环流的物理过程的年代际变化。在ENSO事件中,热带印度洋及邻近海域不同海区海温对热带中东太平洋海温异常信号存在不同的滞后响应最显著的时间及显著维持时间,热带北印度洋、海洋性大陆及南海海温的显著响应可持续到次年夏季。ENSO的演变、热带印度洋及海洋性大陆海温对ENSO的滞后响应时间在1980年代初及2000年代初经历了显著的年代际转变。第二阶段的ENSO事件较前后两个阶段持续时间更长、强度更强,热带南、北印度洋海温信号的显著响应时间则更滞后。海洋性大陆的海温则经历了响应显著、不显著和显著的年代际变化,其中最后一阶段的滞后显著响应的维持时间要比第一阶段长。ENSO事件通过热带印度洋及邻近区域海温的滞后响应,进而影响东亚副热带夏季环流系统异常的过程也具有明显的年代际变化特征。海洋性大陆海温、热带北印度洋海温和赤道中东太平洋海温都可分别作为不同年代的关键因子强迫东亚副热带夏季环流系统的异常,进而影响东亚夏季气候。
Based on the monthly mean sea surface temperature(SST) data and the reanalysis data over the period of 1958-2018, we have investigated the interdecadal variation of the thermal response characteristics of the Indian Ocean, the South China Sea, and the Maritime Continent to the El Niño-Southern Oscillation(ENSO). We have also investigated the interdecadal variation of the physical process for the circulation response features over the subtropical northwestern Pacific Ocean to ENSO events. During the evolution of the ENSO events, the SST in different areas of the tropical Indian Ocean and adjacent waters presents various features in terms of both maximum lag-response and duration of prominent lag-response to the SST anomalies in the equatorial central-eastern Pacific. The prominent lag-response of the SST in the tropical northern Indian Ocean, the Maritime Continent, and the South China Sea can last until the following summer of ENSO. Both the evolution features of the ENSO events and the lag response features of SST in the tropical Indian Ocean and the Maritime Continent to ENSO experienced obvious interdecadal changes in the early 1980s and early 2000s. Compared with the first and the third periods, the duration and strength of ENSO events were longer and stronger in the second period, respectively, accompanied by slower significant response of the SST in the tropical southern and northern Indian Oceans. The SST in the Maritime Continent experienced noticeable interdecadal changes alternatively in the significant lag-response and the less significant lag-response to ENSO, with a longer duration of the noteworthy response in the last period than in the first one. The impact process of the ENSO on the summer circulation over the subtropical East Asia, via the lag-response of the SST in the tropical Indian Ocean and adjacent waters, also shows interdecadal changes. The SST in the Maritime Continent, the tropical northern Indian Ocean and the equatorial central-eastern Pacific can be recognized as the key factors in different periods, which may induce the anomalous summer circulation over the subtropical East Asia, and then further affect the summer climate in East Asia.
ENSO海温热带印度洋响应时间年代际变化
ENSOsea surface temperatureIndian Oceanresponse timeinterdecadal change
WALLACE J M, RASMUSSON E M, MITCHELL T P, et al. On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA [J]. Journal of Geophysical Research:Oceans, 1998, 103(C7): 14241-14259.
ASHOK K,BEHERA S K, RAO S A, et al. El Niño Modoki and its possible teleconnection [J].Journal of Geophysical Research:Oceans,2007,112(C11): C11007.
LARKIN N K, HARRISON D E. Global seasonal temperature and precipitation anomalies during El Niño autumn and winter [J]. Geophysical Research Letters, 2005, 32(16): L16705.
WENG H, ASHOK K, BEHERA S K, et al. Impacts of recent El Niño Modoki on dry/wet conditions in the pacific rim during boreal summer [J] Climate Dynamics, 2007, 29(2/3): 113-129.
ZHANG W, JIN F F, LI J, et al. Contrasting impacts of two-type El Niño over the Western North Pacific during Boreal autumn [J]. Journal of the Meteorological Society of Japan, 2011, 89(5): 563-569.
ZHANG W, JIN F F, TURNER A. Increasing autumn drought over southern China associated with ENSO regime shift [J]. Geophysical Research Letters, 2014, 41(11): 4020-4026.
HUANG R H, WU Y F. The influence of ENSO on the summer climate change in China and its mechanism [J]. Advances in Atmospheric Sciences, 1989,6(1): 21-33.
FENG J, CHEN W, TAM C Y, et al. Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases [J]. International Journal of Climatology, 2011, 31(14): 2091-2101.
袁媛,杨辉,李崇银.不同分布型厄尔尼诺事件及对中国次年夏季降水的可能影响[J].气象学报,2012,70(3):467-478.
王钦,李双林,付建建,等.1998和2010年夏季降水异常成因的对比分析:兼论两类不同厄尔尼诺事件的影响[J].气象学报,2012,70(6):1207-1222.
ZHANG R, SUMI A, KIMOTO M. Impact of El Niño on the East Asian monsoon: A diagnostic study of '86/87 and '91/92 events [J]. Journal of the Meteorological Society of Japan, 1996, 74(1): 49-62.
WANG B, WU R, FU X. Pacific-East Asian Teleconnection: How does ENSO affect East Asian climate? [J]. J Climate, 2000, 13(9): 1517-1536
XIE S P, KOSAKA Y, DU Y, et al. Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review [J]. Advances in Atmospheric Sciences, 2016, 33(4): 411-432.
YANG J L, LIU Q Y, XIE S P, et al. Impact of the Indian Ocean SST basin mode on the Asian summer monsoon [J]. Geophysical Research Letters, 2007, 34(2): L02708.
XIE S P, HU K, HAFNER J, et al. Indian Ocean capacitor effect on Indo-Western pacific climate during the summer following El Niño [J]. J Climate, 2009, 22(3): 730-747.
CHUNG P H, SUI C H, LI T. Interannual relationships between the tropical sea surface temperature and summertime subtropical anticyclone over the western North Pacific [J]. Journal of Geophysical Research:Atmospheres, 2011, 116(D13): D13111.
CHEN Z, WEN Z, WU R, et al. 2016. Relative importance of tropical SSTA in maintaining the Western North Pacific anomalous anticyclone during El Niño to La Niña transition years [J]. Climate Dynamics, 2016, 46(3/4): 1027–1041.
KLEIN S A, SODEN B J, LAU N C. Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge [J]. J Climate, 1999, 12(4): 917-932.
简茂球,罗会邦,乔云亭. 印度洋-太平洋各季海温年际变异模的相关性及其与我国夏季降水的关系 [J]. 热带气象学报,2006,22(2): 131-137.
XIE S P, DU Y, HUANG G, et al. Interdecadal shift in El Niño influences on Indo-western Pacific and East Asian climate in the 1970s [J]. J Climate, 2010, 23(12): 3352-3368.
CLOWDARY J S, XIE S P, TOKINAGA H, et al. Interdecadal variations in ENSO teleconnection to the Indo-Western Pacific for 1870-2007[J]. J Climate, 2012, 25:1722-1744.
WU B, ZHOU T. Oceanic origin of the interannual and interdecadal variability of the summertime western Pacific subtropical high [J]. Geophysical Research Letters, 2008, 35(13):L13701.
YEH S W, KUG J S, DEWITTE B, et al. El Niño in a changing climate [J]. Nature, 2009, 461(7263): 511-514.
HUANG B, THORNE P W, BANZON V F, et al. Extended reconstructed sea surface temperature version 5 (ERSSTv5), upgrades, validations, and intercomparisons [J]. J Climate,2017,30(20):8179-8205.
KALNAY E, KANAMITSU M, KISTLER R, et al. The NCEP/NCAR 40-year reanalysis project [J]. Bull Amer Meteor Soc, 1996, 77(3): 437-471.
WANG B, HUANG F, WU Z, et al. Multi-scale climate variability of the South China Sea monsoon: A review [J]. Dynamics of Atmospheres and Oceans, 2009, 47(1): 15-37.
DU Y, XIE S P, HUANG G, et al. Role of air-sea interaction in the long persistence of El Niño-induced north Indian Ocean warming [J]. J Climate, 2009, 22(8): 2023-2038.
SUI C H, CHUNG P H, LI T. Interannual and interdecadal variability of the summertime western North Pacific subtropical high [J]. Geophysical Research Letters, 2007, 34(11):L11701.
LI S L, LU J, HUANG G, et al. Tropical Indian Ocean basin warming and East Asian summer monsoon: A multiple AGCM study[J]. J Climate, 2008, 21(22): 6080-6088.
ZHANG Z, JIAN M, GAO S, et al. Interdecadal change in the relationship between interannual variation of the South China Sea monsoon trough and tropical Indo-Pacific SST[J]. Int J Climatol, 2021, 41(Suppl 1): E2379-E2394.
WANG B, XIANG B, LEE J Y. Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions[J]. Proc Natl Acad Sci USA, 2013, 110(8): 2718-2722.
XIANG B, WANG B, YU W, et al. How can anomalous western North Pacific subtropical high intensify in late summer?[J]. Geophysical Research Letters, 2013, 40(10): 2349-2354.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构