1.中山大学大气科学学院 / 广东省气候变化与自然灾害研究重点实验室,广东 珠海 519082
2.南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082
3.惠州学院地理与旅游学院,广东 惠州 516007
LUO Qing(luoq57@mail2.sysu.edu.cn)
CHEN Zijian(chenzj59@mail2.sysu.edu.cn)
LIN Wenshi (linwenshi@mail.sysu.edu.cn)
JIANG Baolin(jiangblin@hzu.edu.cn)
CAO Qimin(caoqm@mail2.sysu.edu.cn)
LI Fangzhou(lifzhou@mail2.sysu.edu.cn)
纸质出版日期:2023-03-25,
网络出版日期:2022-09-17,
收稿日期:2022-02-27,
录用日期:2022-06-14
扫 描 看 全 文
罗青,陈子健,林文实等.海盐核对华南沿海一次暖区暴雨的影响[J].中山大学学报(自然科学版),2023,62(02):123-136.
LUO Qing,CHEN Zijian,LIN Wenshi,et al.Effect of sea salt aerosols on a warm-sector heavy rainfall event over coastal Southern China[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(02):123-136.
罗青,陈子健,林文实等.海盐核对华南沿海一次暖区暴雨的影响[J].中山大学学报(自然科学版),2023,62(02):123-136. DOI: 10.13471/j.cnki.acta.snus.2022D010.
LUO Qing,CHEN Zijian,LIN Wenshi,et al.Effect of sea salt aerosols on a warm-sector heavy rainfall event over coastal Southern China[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(02):123-136. DOI: 10.13471/j.cnki.acta.snus.2022D010.
采用中尺度数值天气模式WRF-Chem 4.1.2,模拟了2014年在华南沿海地区发生的一次暖区强降水事件。通过进行3个不同海盐核排放强度(CTL,LOW,HIGH)试验,从降水落区、水成物分布、微物理过程以及潜热释放方面,探讨了海盐气溶胶浓度对暖区暴雨的影响。研究结果表明,海盐核浓度对降水落区有一定的影响,低海盐核排放下的降水区域更分散,而高海盐核排放下的降水区域更集中。低(高)海盐核排放情况下,降水中的云凝结核浓度减少(增加)、雨水和霰的混合比增加(减少)、云微物理过程尤其是云水自动转化成雨水及云水被雨水收集过程增强(减弱)、潜热释放增加(减小)以及上升运动增强(减弱),导致累计降水增多(减小)及降雨率增大(减小)。
This study used the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 4.1.2 to simulate a warm-sector heavy rainfall (WSHR) event that occurred over coastal Southern China in 2014. To investigate the effects of the concentration of sea salt aerosols (SSA) on the development of WSHR
different levels of SSA emission were incorporated in three separate experiments (CTL
LOW
and HIGH). The distribution of precipitation and hydrometeors
the microphysical processes
and the release of latent heat resulting from the rainfall in all three simulations were analyzed. Results show that SSA mass concentration can affect the rainfall area: the LOW experiment shows dispersed rainfall
whereas the HIGH experiment presents concentrated rainfall. Under the situation of low (high) SSA emission: the concentration of cloud condensation nuclei during rainfall decreases (increases)
the mixing ratio of rain and graupel increases (decreases)
and microphysical processes
particularly the automatic conversion of cloud water into rainwater and accretion of cloud water by rain
are enhanced (weakened)
more (less) latent heat is released
and the updrafts are enhanced (weakened); these result in an increase (decrease) of accumulated precipitation and rain rate.
海盐核暖区暴雨微物理效应WRF-Chem模式
sea salt aerosolswarm-sector heavy rainfallmicrophysical effectsWRF-Chem model
LEWIS R, SCHWARTZ E, 2004. Sea salt aerosol production: mechanisms, methods, measurements and models—A critical review[M]. Washington, D. C.: American Geophysical Union.
BARNARD J C, CHAPMAN E G, FAST J D, et al, 2004. An evaluation of the FAST-J photolysis algorithm for predicting nitrogen dioxide photolysis rates under clear and cloudy sky conditions[J]. Atmos Environ, 38(21): 3393-3403.
CHAMEIDES W L, STELSON A W, 1992. Aqueous-phase chemical processes in deliquescent sea-salt aerosols: A mechanism that couples the atmospheric cycles of S and sea salt[J]. J Geophys Res, 97(D18): 20565.
CHIN M, GINOUX P, KINNE S, et al, 2002. Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and Sun photometer measurements[J]. J Atmos Sci, 59(3): 461-483.
DAVIS C A, JrGALARNEAU T J, 2009. The vertical structure of mesoscale convective vortices[J]. J Atmos Sci, 66(3): 686-704.
DU Y, CHEN G, 2018. Heavy rainfall associated with double low-level jets over Southern China. part I: Ensemble-based analysis[J]. Mon Weather Rev, 146(11): 3827-3844.
FAN J, LEUNG L R, LI Z, et al, 2012. Aerosol impacts on clouds and precipitation in Eastern China: Results from Bin and bulk microphysics[J]. J Geophys Res, 117: D00K36.
GAO W H, ZHAO F S, HU Z J, et al, 2012. Improved CAMS cloud microphysics scheme and numerical experiment coupled with WRF model[J]. Chin J Geophys, 55(2): 396-405.
GONG S L, 2003. A parameterization of sea-salt aerosol source function for sub- and super-micron particles[J]. Global Biogeochem Cycles, 17(4): 1097.
GONG S L, BARRIE L A, PROSPERO J M, et al, 1997. Modeling sea-salt aerosols in the atmosphere: 2. Atmospheric concentrations and fluxes[J]. J Geophys Res, 102(D3): 3819-3830.
GRELL G A, DÉVÉNYI D, 2002. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques[J]. Geophys Res Lett, 29(14): 1693.
GRELL G A, PECKHAM S E, SCHMITZ R, et al, 2005. Fully coupled “online” chemistry within the WRF model[J]. Atmos Environ, 39(37): 6957-6975.
GUENTHER A, KARL T, HARLEY P, et al, 2006. Estimates of global terrestrial isoprene emissions using MEGAN (Model of emissions of gases and aerosols from nature)[J]. Atmos Chem Phys, 6(11): 3181-3210.
GUO J, LUO Y, YANG J, et al, 2022. Effects of anthropogenic and sea salt aerosols on a heavy rainfall event during the early-summer rainy season over coastal Southern China[J]. Atmos Res, 265: 105923.
HAN B, DU Y, WU C, et al, 2021. Microphysical characteristics of the coexisting frontal and warm-sector heavy rainfall in South China[J]. JGR Atmospheres, 126(21): e2021JD035446.
HERBENER S R, van den HEEVER S C, CARRIÓ G G, et al, 2014. Aerosol indirect effects on idealized tropical cyclone dynamics[J]. J Atmos Sci, 71(6): 2040-2055.
IACONO M J, DELAMERE J S, MLAWER E J, et al, 2008. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models[J]. J Geophys Res, 113(D13): D13103.
JIANG B, LIN W, LI F, et al, 2019. Sea-salt aerosol effects on the simulated microphysics and precipitation in a tropical cyclone[J]. J Meteorol Res, 33(1): 115-125.
JIMÉNEZ P A, DUDHIA J, GONZÁLEZ-ROUCO J F, et al, 2012. A revised scheme for the WRF surface layer formulation[J]. Mon Weather Rev, 140(3): 898-918.
LAMARQUE J F, EMMONS L K, HESS P G, et al, 2012. CAM-chem: Description and evaluation of interactive atmospheric chemistry in the Community Earth System Model[J]. Geosci Model Dev, 5(2): 369-411.
LI M, LUO Y, ZHANG D L, et al, 2021. Analysis of a record-breaking rainfall event associated with a monsoon coastal megacity of South China using multisource data[J]. IEEE Trans Geosci Remote Sens, 59(8): 6404-6414.
LIN Y L, FARLEY R D, ORVILLE H D, 1983. Bulk parameterization of the snow field in a cloud model[J]. J Climate Appl Meteor, 22(6): 1065-1092.
LIU Y, DAUM P H, 2004. Parameterization of the autoconversion Process.Part I: Analytical formulation of the kessler-type parameterizations[J]. J Atmos Sci, 61(13): 1539-1548.
LIVNEH B, RESTREPO P J, LETTENMAIER D P, 2011. Development of a unified land model for prediction of surface hydrology and land–atmosphere interactions[J]. J Hydrometeorol, 12(6): 1299-1320.
LOHMANN U, FEICHTER J, 2005. Global indirect aerosol effects: A review[J]. Atmos Chem Phys, 5(3): 715-737.
LUO H, JIANG B, LI F, et al, 2019. Simulation of the effects of sea-salt aerosols on the structure and precipitation of a developed tropical cyclone[J]. Atmos Res, 217: 120-127.
MONAHAN E C, SPIEL D E, DAVIDSON K L, A model of marine aerosol generation via whitecaps and wave disruption[M]// /MONAHAN E C, et al,eds. Oceanic Whitecaps:Oceanographic Sciences Library, Vol 2. Dordrecht: Springer, 1986: 167-174.
ROSENFELD D, 1999. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall[J]. Geophys Res Lett, 26(20): 3105-3108.
ROSENFELD D, 2000. Suppression of rain and snow by urban and industrial air pollution[J]. Science, 287(5459): 1793-1796.
ROSENFELD D, LAHAV R, KHAIN A, et al, 2002. The role of sea spray in cleansing air pollution over ocean via cloud processes[J]. Science, 297(5587): 1667-1670.
ROSENFELD D, LOHMANN U, RAGA G B, et al, 2008. Flood or drought: How do aerosols affect precipitation?[J]. Science, 321(5894): 1309-1313.
SKAMAROCK W C, KLEMP J B, 2008. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications[J]. J Comput Phys, 227(7): 3465-3485.
TWOMEY S, 1977. The influence of pollution on the shortwave albedo of clouds[J]. J Atmos Sci, 34(7): 1149-1152.
WAN Q, WANG B, WONG W K, et al, 2017. The Southern China monsoon rainfall experiment (SCMREX)[J]. Bull Am Meteorol Soc, 98(5): 999-1013.
WIEDINMYER C, AKAGI S K, YOKELSON R J, et al, 2011. The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning[J]. Geosci Model Dev, 4(3): 625-641.
WILD O, ZHU X, PRATHER M J, 2000. Fast-J: Accurate simulation of in- and below-cloud photolysis in tropospheric chemical models[J]. J Atmos Chem, 37(3): 245-282.
WU N, ZHUANG X, MIN J, et al, 2020. Practical and intrinsic predictability of a warm-sector torrential rainfall event in the South China monsoon region[J]. J Geophys Res Atmos, 125(4): e2019JD031313.
WU Z, CAI J, LIN L, et al,2018. Analysis of mesoscale systems and predictability of the torrential rain process in Guangzhou on 7 May 2017[J].Meteorological Monthly,44 (4): 485-499.
XIAO H, YIN Y, JIN L, et al, 2014. Simulation of aerosol effects on orographic clouds and precipitation using WRF model with a detailed Bin microphysics scheme[J]. Atmos Sci Lett, 15(2): 134-139.
ZAVERI R A, EASTER R C, FAST J D, et al, 2008. Model for simulating aerosol interactions and chemistry (MOSAIC)[J]. J Geophys Res, 113(D13): D13204.
ZAVERI R A, PETERS L K, 1999. A new lumped structure photochemical mechanism for large-scale applications[J]. J Geophys Res, 104(D23): 30387-30415.
ZHANG Q, STREETS D G, CARMICHAEL G R, et al, 2009. Asian emissions in 2006 for the NASA INTEX-B mission[J]. Atmos Chem Phys, 9(14): 5131-5153.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构