1.珠海市规划设计研究院,广东 珠海 519001
2.珠海航空城(机场)集团,广东 珠海 519000
3.中山大学土木工程学院,广东 广州 510275
4.南方海洋科学与工程广东省实验室,广东 珠海 519082
李栋(1986年生),男;研究方向:岩土与地下工程;E-mail:lidongcqu@163.com
刘建坤(1965年生),男;研究方向:冻土和软土;E-mail:liujiank@mail.sysu.edu.cn
纸质出版日期:2023-03-25,
网络出版日期:2022-09-19,
收稿日期:2022-02-12,
录用日期:2022-04-28
扫 描 看 全 文
李栋,吴宏生,李学等.珠海软土HSS模型参数试验研究[J].中山大学学报(自然科学版),2023,62(02):137-145.
LI Dong,WU Hongsheng,LI Xue,et al.Experimental study on parameters of HSS model for soft soil in Zhuhai[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(02):137-145.
李栋,吴宏生,李学等.珠海软土HSS模型参数试验研究[J].中山大学学报(自然科学版),2023,62(02):137-145. DOI: 10.13471/j.cnki.acta.snus.2022D005.
LI Dong,WU Hongsheng,LI Xue,et al.Experimental study on parameters of HSS model for soft soil in Zhuhai[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(02):137-145. DOI: 10.13471/j.cnki.acta.snus.2022D005.
小应变硬化模型(HSS)可考虑土体在小应变范围内剪切模量随应变增大而衰减的特性,能够准确描述土体的压硬性与剪胀性。本研究通过常规固结试验、三轴固结排水试验以及共振柱试验获得珠海地区典型软土层的HSS模型参数以及参数之间的比例关系。结果显示,珠海地区填土的有效抗剪强度指标
<math id="M1"><msup><mrow><mi>c</mi></mrow><mrow><mi>'</mi></mrow></msup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427002&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427000&type=
1.86266661
2.53999996
接近0,均小于淤泥和淤泥质土;但其
<math id="M2"><msup><mrow><mi>φ</mi></mrow><mrow><mi>'</mi></mrow></msup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427007&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427004&type=
2.53999996
3.04800010
大于淤泥和淤泥质土。珠海地区淤泥和淤泥质土的三轴切线模量
<math id="M3"><msubsup><mrow><mi>E</mi></mrow><mrow><mn mathvariant="normal">50</mn></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427012&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49426970&type=
3.97933316
3.47133350
和卸载再加载切线模量
<math id="M4"><msubsup><mrow><mi>E</mi></mrow><mrow><mi mathvariant="normal">u</mi><mi mathvariant="normal">r</mi></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49426971&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427014&type=
3.97933316
3.47133350
的比例关系为
<math id="M5"><msubsup><mrow><mi>E</mi></mrow><mrow><mi mathvariant="normal">u</mi><mi mathvariant="normal">r</mi></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup><mo>=</mo><mfenced separators="|"><mrow><mn mathvariant="normal">2.66</mn><mo>~</mo><mn mathvariant="normal">3.39</mn></mrow></mfenced><msubsup><mrow><mi>E</mi></mrow><mrow><mn mathvariant="normal">50</mn></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427020&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427018&type=
27.60133362
3.21733332
。填土的固结切线模量
<math id="M6"><msubsup><mrow><mi>E</mi></mrow><mrow><mi mathvariant="normal">o</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">d</mi></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427030&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427028&type=
4.57200003
3.47133350
明显大于
<math id="M7"><msubsup><mrow><mi>E</mi></mrow><mrow><mn mathvariant="normal">50</mn></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427039&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49426977&type=
3.97933316
3.47133350
,约是后者的2.89倍,而淤泥和淤泥质土的
<math id="M8"><msubsup><mrow><mi>E</mi></mrow><mrow><mi mathvariant="normal">o</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">d</mi></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427030&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427028&type=
4.57200003
3.47133350
略小于
<math id="M9"><msubsup><mrow><mi>E</mi></mrow><mrow><mn mathvariant="normal">50</mn></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427033&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427042&type=
3.97933316
3.47133350
。此外,淤泥和淤泥质土在100 kPa参考围压下的卸载再加载切线模量分别为8.02和10.89 MPa,与固结切线模量的比例关系大概在3.6~4.1倍之间。
The HS-Small(HSS) model can reflect the decrease of the shear modulus of soft soil with strain in the small range and describe hardening and dilatancy behavior. In the present study,the conventional oedometer test, triaxial experiment, and resonant column test were conducted to obtain the parameters of the HSS model for typical soft soil in Zhuhai and the relationship between these parameters. Test results show that the effective shear strength index
<math id="M10"><msup><mrow><mi>c</mi></mrow><mrow><mi>'</mi></mrow></msup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427053&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427036&type=
2.11666679
2.96333337
of backfill is close to zero, which is less than that of silt and silty soil, but
<math id="M11"><msup><mrow><mi>φ</mi></mrow><mrow><mi>'</mi></mrow></msup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427058&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427055&type=
2.96333337
3.55599999
larger than silt and silty soil. Besides the loading-unloading tangent modulus
<math id="M12"><msubsup><mrow><mi>E</mi></mrow><mrow><mi mathvariant="normal">u</mi><mi mathvariant="normal">r</mi></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427070&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427090&type=
4.57200003
4.06400013
of silt and silty soil is about 2.66 ~ 3.39 times than the triaxial tangent modulus
<math id="M13"><msubsup><mrow><mi>E</mi></mrow><mrow><mn mathvariant="normal">50</mn></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427066&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427063&type=
4.57200003
4.06400013
. However, the consolidation tangent modulus
<math id="M14"><msubsup><mrow><mi>E</mi></mrow><mrow><mi mathvariant="normal">o</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">d</mi></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427083&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427052&type=
5.24933338
4.06400013
of backfill soil is significantly greater than triaxial tangent modulus, which is about 2.89 times of
<math id="M15"><msubsup><mrow><mi>E</mi></mrow><mrow><mn mathvariant="normal">50</mn></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427089&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427087&type=
4.57200003
4.06400013
. In addition, the loading-unloading tangent modulus
<math id="M16"><msubsup><mrow><mi>E</mi></mrow><mrow><mi mathvariant="normal">u</mi><mi mathvariant="normal">r</mi></mrow><mrow><mi mathvariant="normal">r</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">f</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427070&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49427090&type=
4.57200003
4.06400013
of silt and silty soil under reference confining pressure of 100 kPa is 8.02 and 10.89 MPa, respectively, showing proportional relationship with the consolidation tangent modulus is in the range of 3.6~4.1 .
珠海软土HSS模型参数标定抗剪强度阻尼比
soft soil in ZhuhaiHSS modelparameter calibrationshear strengthdamping ratio
陈尚荣, 李通达, 梁发云, 等, 2020. 上海临港砂质粉土硬化土小应变模型参数研究[J]. 同济大学学报(自然科学版), 48(6): 841-846.
陈少杰, 顾晓强, 高广运, 2019. 土体小应变剪切模量的现场和室内试验对比及工程应用[J]. 岩土工程学报, 41(S2): 133-136.
陈赟, 罗敏敏, 夏能武, 等, 2021. 软土HSS模型参数现有试验成果统计分析[J]. 岩土工程学报, 43(S2): 197-201.
董学超,王水林,郭明伟,等,2020. 基于压缩试验曲线的HSS模型参数优化[J]. 岩土力学, 41(增刊2):1-9.
李连祥, 刘嘉典, 李克金, 等, 2019. 济南典型地层HSS参数选取及适用性研究[J]. 岩土力学, 40(10): 4021-4029.
顾晓强, 刘文倩, 陈玺元, 等, 2021a. 广东阳江地区海洋软土HSS模型参数的试验研究[J]. 岩土工程学报, 43(S2): 41-44.
顾晓强, 吴瑞拓, 梁发云, 等, 2021b. 上海土体小应变硬化模型整套参数取值方法及工程验证[J]. 岩土力学, 42(3): 833-845.
胡静, 唐跃, 张家康, 等, 2021. 高速列车荷载作用下饱和软土地基动力响应研究[J]. 岩土力学, 42(11): 3169-3181.
姜燕, 杨光华, 孙树楷, 等, 2019. 广州市南沙区软土物理力学指标统计分析[J]. 长江科学院院报, 36(9): 99-103.
蒋明镜, 彭立才, 朱合华, 等, 2010. 珠海海积软土剪切带微观结构试验研究[J]. 岩土力学, 31(7): 2017-2023+2029.
李金柱, 朱向荣, 刘用海, 2010. 结构性软土弹塑性损伤模型及其应用[J]. 浙江大学学报(工学版), 44(4): 806-811.
李学, 刘治清, 宋晶, 等, 2017. 有机质在吹填淤泥固结中的微宏观特征[J]. 中国海洋大学学报(自然科学版), 47(10): 28-35.
梁发云, 贾亚杰, 丁钰津, 等, 2017. 上海地区软土HSS模型参数的试验研究[J]. 岩土工程学报, 39(2): 269-278.
刘汉龙, 肖杨, 崔允亮, 2011. 结构性软土三维弹塑性损伤本构模型研究[J]. 岩土工程学报, 33(4): 637-642.
鲁泰山, 刘松玉, 蔡国军, 等, 2021. 软土地层基坑开挖扰动及土体再压缩变形研究[J]. 岩土力学, 42(2): 565-573+ 580.
吕锋, 2018. 基于HSS和M-C本构模型软土基坑变形数值分析[J]. 建材与装饰, (44): 94-95.
盛旭圆, 2020. MC、HS、HSS本构模型在深基坑开挖模拟中的比较分析[J]. 低温建筑技术, 42(7): 128-131, 138.
施有志, 阮建凑, 吴昌兴, 2017. 厦门地区典型地层HS-small模型小应变参数敏感性分析[J]. 科学技术与工程, 17(2): 100-105.
宋许根, 王志勇, 柏威伟, 等, 2019. 珠海西部中心城区大面积深厚软土工程特性研究[J]. 岩石力学与工程学报, 38(7): 1434-1451.
王卫东, 王浩然, 徐中华, 2013. 上海地区基坑开挖数值分析中土体HS-Small模型参数的研究[J]. 岩土力学, 34(6): 1766-1774.
谢东武, 管飞, 丁文其, 2017. 小应变硬化土模型参数的确定与敏感性分析[J]. 地震工程学报, 39(5): 898-906.
中华人民共和国住房和城乡建设部,2019. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社.
ALZABEEBEE S, 2020. Numerical analysis of the interference of two active machine foundations[J]. Geotech Geol Eng, 38(5): 5043-5059.
BENZ T, VERMEER P A, SCHWAB R, 2009. A small-strain overlay model[J]. Int J Numer Anal Meth Geomech, 33(1): 25-44.
NIEMUNIS A, CUDNY M, 2018. Discussion on “Dynamic soil-structure interaction: A three-dimensional numerical approach and its application to the Lotung case study”— Poor performance of the HSS model[J]. Comput Geotech, 98: 243-245.
SAIF A, 2021. Influence of soil model complexity on the seismic response of shallow foundations[J]. Geomech Eng, 24(2): 193-203.
SCHANZ T,VERMEER P A,BONNIER P G,1999. The hardening soil model:Formulation and verification [C]// Proceedings of the International Symposium Beyond 2000 in Computional Geotechnics. Amsterdam.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构