1.中山大学中法核工程与技术学院,广东 珠海 519082
2.中国核动力研究设计院,四川 成都 610213
叶伟杰(1997年生),男;研究方向:核反应堆热工水力;E-mail:yewj9@mail2.sysu.edu.cn
王来顺(1990年生),男;研究方向:核反应堆热工水力;E-mail:wanglaish@mail.sysu.edu.cn
纸质出版日期:2023-07-25,
网络出版日期:2023-01-30,
收稿日期:2022-09-07,
录用日期:2022-12-13
扫 描 看 全 文
叶伟杰,李松蔚,王来顺等.低碳钢表面氧化效应对加热面朝下CHF的影响[J].中山大学学报(自然科学版),2023,62(04):102-107.
YE Weijie,LI Songwei,WANG Laishun,et al.The influence of surface oxidation effect of low-carbon steel on downward-facing CHF[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(04):102-107.
叶伟杰,李松蔚,王来顺等.低碳钢表面氧化效应对加热面朝下CHF的影响[J].中山大学学报(自然科学版),2023,62(04):102-107. DOI: 10.13471/j.cnki.acta.snus.2022B068.
YE Weijie,LI Songwei,WANG Laishun,et al.The influence of surface oxidation effect of low-carbon steel on downward-facing CHF[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(04):102-107. DOI: 10.13471/j.cnki.acta.snus.2022B068.
先进压水堆压力容器下封头采用材料为低碳钢SA508,其表面容易氧化,可能对堆内熔融物滞留(IVR, in-vessel retention)策略临界热流密度(CHF,critical heat flux)产生显著影响,从而影响该策略安全余量。针对这一问题,本文首先研究了低碳钢SA508不同程度表面氧化对加热面朝下CHF的影响,其次研究了在低碳钢表面氧化情况下纳米流体强化CHF效果。结果发现,低碳钢SA508表面氧化对加热面朝下池式沸腾CHF具有显著影响,随着氧化程度的加深,CHF快速增长并最终达到稳定,表面完全氧化情况下CHF稳定值是表面轻微氧化情况下的2倍左右;将完全氧化低碳钢表面放入纳米流体中进行沸腾实验,发现纳米流体可以继续提高完全氧化表面CHF但效果大幅减弱,CHF增强原因在于表面纳米颗粒沉积层具有很强的吸水性。
The material used for the lower head of the advanced pressurized water reactor pressure vessel is low-carbon steel SA508. The surface of SA508 is easy to oxidize, which may have a significant impact on the Critical Heat Flux (CHF) of the In-Vessel Retention (IVR) strategy, thus affecting the safety margin of the strategy. In this study, the influence of the different degrees of surface oxidation on CHF of low-carbon steel SA508 was first investigated through experiments. Then the CHF enhancement effect of nanofluid was studied under the condition of surface oxidation of low-carbon steel. It was found that the surface oxidation of low-carbon steel SA508 significantly affected the CHF in downward-facing pool boiling. With the deepening of the oxidation degree, CHF increased rapidly and finally reached stability. The stability value of CHF under complete surface oxidation was about two times that under slight surface oxidation. Boiling experiments were carried out on the surface of fully oxidized low-carbon steel in a nanofluid. It was found that the nanofluid could continue to increase the CHF of the fully oxidized surface, but the effect was significantly reduced. The increase in CHF was due to the water absorption ability of the surface nano-particle deposition layer. The results may help determine the actual safety margin of IVR and which is the effective enhancement method.
IVR(in-vessel retention)策略表面氧化纳米流体CHF(critical heat flux)增强效应
IVR(in-vessel retention) strategysurface oxidationnanofluidsCHF(critical heat flux) enhancement effect
CHANG H, HU T, LU W, et al, 2017. Experimental study on CHF using a full scale 2-D curved test section with additives and SA508 heater for IVR-ERVC strategy[J]. Exp Therm Fluid Sci, 84: 1-9.
CHRISTENSEN G, YOUNES H, HONG H, et al, 2019. Nanofluids as media for high capacity anodes of lithium-ion battery—a review[J]. J Nanofluids, 8(4): 657-670.
CILOGLU D, BOLUKBASI A, et al, 2015. A comprehensive review on pool boiling of nanofluids[J]. Appl Therm Eng, 84: 45-63.
FANG X, CHEN Y, ZHANG H, et al, 2016. Heat transfer and critical heat flux of nanofluid boiling: A comprehensive review[J]. Renew Sustain Energy Rev, 62: 924-940.
KAMEL M S, LEZSOVITS F, HUSSEIN A M, et al, 2018. Latest developments in boiling critical heat flux using nanofluids: A concise review[J]. Int Commun Heat Mass Transf, 98: 59-66.
KIM S J, BANG I C, BUONGIORNO J, et al, 2007. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux[J]. Int J Heat Mass Transf, 50(19/20): 4105-4116.
LEE J, CHANG S H, 2012. An experimental study on CHF in pool boiling system with SA508 test heater under atmospheric pressure[J]. Nucl Eng Des, 250: 720-724.
LIAO L, BAO R, LIU Z, 2008. Compositive effects of orientation and contact angle on critical heat flux in pool boiling of water[J]. Heat Mass Transfer, 44(12): 1447-1453.
MEI Y, SHAO Y, GONG S, et al, 2018. Effects of surface orientation and heater material on heat transfer coefficient and critical heat flux of nucleate boiling[J]. Int J Heat Mass Transf, 121: 632-640.
SHEIKHOLESLAMI M, ROKNI HB., 2017. Nanofluid two phase model analysis in existence of induced magnetic field[J]. Int J Heat Mass Transf, 107: 288-299.
SHEIKHOLESLAMI M, HATAMI M, GANJI D D, 2014. Nanofluid flow and heat transfer in a rotating system in the presence of a magnetic field[J]. J Mol Liq, 190: 112-120.
RAO S S, SRIVASTAVA A, 2014. Interferometry-based whole field investigation of heat transfer characteristics of dilute nanofluids[J]. Int J Heat Mass Transf, 79: 166-175.
TROJER M, AZIZIAN R, PARAS J, et al, 2018. A margin missed: The effect of surface oxidation on CHF enhancement in IVR accident scenarios[J]. Nucl Eng Des, 335: 140-150.
WANG X, DANI F, JUAN G, et al, 2022a. Effect of wettability on pool boiling heat transfer with copper microporous coated surface[J]. Int J Heat Mass Transf, 194:388-398.
WANG L, YE W, HE X, et al, 2022b. Experimental study on the CHF enhancement effect of nanofluids on the oxidized low carbon steel surface[J]. Appl Therm Eng, 204: 117968.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构