浙江大学流体动力与机电系统国家重点实验室,浙江 杭州 310027
倪艺铭(1999年生),女;研究方向:可再生能源装备;E-mail:zju22125109@zju.edu.cn
刘宏伟(1978年生),男;研究方向:可再生能源装备;E-mail:lhw7802@zju.edu.cn;zju000@163.com
纸质出版日期:2023-07-25,
网络出版日期:2023-02-20,
收稿日期:2022-07-14,
录用日期:2022-12-13
扫 描 看 全 文
倪艺铭,高艳婧,刘宏伟等.水沙环境对海流能机组水动性能的影响[J].中山大学学报(自然科学版),2023,62(04):116-125.
NI Yiming,GAO Yanjing,LIU Hongwei,et al.Effect of water-sediment environment on hydrodynamic performance of a tidal current turbine[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(04):116-125.
倪艺铭,高艳婧,刘宏伟等.水沙环境对海流能机组水动性能的影响[J].中山大学学报(自然科学版),2023,62(04):116-125. DOI: 10.13471/j.cnki.acta.snus.2022B057.
NI Yiming,GAO Yanjing,LIU Hongwei,et al.Effect of water-sediment environment on hydrodynamic performance of a tidal current turbine[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(04):116-125. DOI: 10.13471/j.cnki.acta.snus.2022B057.
为了探究水沙环境下海流能机组的水动特性,首先采用CFD-DPM模型仿真沙粒对120 kW海流能叶片翼型升阻力系数的影响,再基于叶素动量理论 (BEM,blade element momentum) 计算水沙环境下120 kW海流能机组的捕获功率,最后从叶片设计的角度出发,提出了为能充分利用沙粒对海流能机组功率的促进作用以及尽量减小沙粒对海流能机组功率的削弱的方法。研究结果表明:当颗粒直径为20
<math id="M1"><mi mathvariant="normal">μ</mi><mi mathvariant="normal">m</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49413905&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49413897&type=
4.40266657
2.87866688
时,随着沙粒质量浓度的增加,沙粒能够促使海流能机组功率提升,当颗粒直径为2 500
<math id="M2"><mi mathvariant="normal">μ</mi><mi mathvariant="normal">m</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49413905&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49413897&type=
4.40266657
2.87866688
时,海流能机组功率因沙粒的存在而被削弱;随着翼型攻角增大,翼型升力系数增大,颗粒对翼型升阻力系数的影响程度增强,升阻力系数的变化量增加;小升力系数的翼型可以充分利用小直径颗粒对机组的功率提升,也可以降低大直径颗粒造成的机组功率削弱。
In order to explore the hydrodynamic characteristics of a tidal current turbine under a water-sediment environment, the CFD-DPM model is employed to study the effect of sand particles on the airfoil lift and drag coefficients of 120 kW tidal current turbine blade. Based on the blade element momentum theory(BEM), the 120 kW tidal current turbine power is calculated. From the perspective of blade design, the method to make full use of or reduce the influence of sand particles on the power of the tidal current turbine is put forward. The results show that when the particle diameter is 20 μm, as the concentration of sand grains increases, the sand particle can improve the tidal current turbine power. When the particle diameter is 2 500 μm, the particle will reduce the power. As the angle of attack increases, the lift coefficient increases, and the effect of the sand particle on the lift and drag coefficients is enhanced. Airfoils with a small lift coefficient would receive power improvement with small particles or power loss reduction with large particle diameters.
海流能机组升阻力系数CFD-DPM叶素动量理论
tidal current turbinelift and drag coefficientsCFD-DPMblade element momentum theory(BEM)
谷国传, 胡方西, 1989. 我国沿海近岸带水域的悬沙分布特征[J]. 地理研究, 8(2): 1-15.
李鹏飞, 徐敏义, 王飞飞, 2011. 精通CFD工程仿真与案例实战[M]. 北京: 人民邮电出版社.
余文畴, 岳红艳, 2002. 长江径流泥沙在世界江河中的地位[J]. 长江科学院院报, 19(6): 13-16.
于勇, 2008. FLUENT入门与进阶教程[M]. 北京: 北京理工大学出版社.
赵纯厚,朱振宏, 周端庄, 2000. 世界江河与大坝[M]. 北京: 中国水利水电出版社.
AHLERT K R, 1994. Effects of particle impingement angle and surface wetting on solid particle erosion of AISI 1018 Steel[D]. Tulsa: The University of Tulsa. Department of Mechanical Engineering: 15-23.
BAGHERI-SADEGHI N, HELENBROOK B T, VISSER K D, 2018. Ducted wind turbine optimization and sensitivity to rotor position[J]. Wind Energy Sci, 3(1): 221-229.
BAMMERT K, SANDSTEDE H, 1976. Influences of manufacturing tolerances and surface roughness of blades on the performance of turbines[J]. J Eng Power, 98(1): 29-36.
BATTEN W M J, BAHAJ A S, MOLLAND A F,et al, 2008. The prediction of the hydrodynamic performance of marine current turbines[J]. Renew Energy, 33(5): 1085-1096.
FRAENKEL P L, 2002. Power from marine currents[J]. Proc Inst Mech Eng A J Power Energy, 216(1): 1-14.
MYERS L, BAHAJ A S,2005. Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney Race[J]. Renew Energy, 30(11): 1713-1731.
NG K W, LAM W H, NG K C, 2013.2002-2012: 10 years of research progress in horizontal-axis marine current turbines[J]. Energies, 6(3): 1497-1526.
OWEN D, DEMIREL Y K, OGUZ E, et al, 2018. Investigating the effect of biofouling on propeller characteristics using CFD[J]. Ocean Eng, 159: 505-516.
SUN L, MA C, SONG P, et al, 2020. Quantitative computational fluid dynamic analyses of oil droplets deposition on vaneless diffusor walls of a centrifugal compressor[J]. Energy Sci Eng, 8(3): 910-921.
TAMPIER G, TRONCOSO C, ZILIC F,2017. Numerical analysis of a diffuser-augmented hydrokinetic turbine[J]. Ocean Eng, 145: 138-147.
WALKER J M,FLACK K A, LUST E E, et al, 2014. Experimental and numerical studies of blade roughness and fouling on marine current turbine performance[J]. Renew Energy, 66: 257-267.
WANG K,LI X, WANG Y, et al, 2017. Numerical investigation of the erosion behavior in elbows of petroleum pipelines[J]. Powder Technol, 314: 490-499.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构