中山大学材料科学与工程学院 / 广东省光伏技术重点实验室,广东 广州 510006
丁思琪(1998年生),女;研究方向:太阳能材料与太阳电池;E-mail:dingsq5@mail2.sysu.edu.cn
艾斌(1973年生),男;研究方向:太阳能材料与太阳电池;E-mail:stsab@mail.sysu.edu.cn
纸质出版日期:2023-01-25,
网络出版日期:2022-09-20,
收稿日期:2022-06-10,
录用日期:2022-07-22
扫 描 看 全 文
丁思琪,覃诚,杨宸等.基于不同位置掺硼直拉单晶硅片的PERC电池的原位光衰及电注入复原[J].中山大学学报(自然科学版),2023,62(01):115-123.
DING Siqi,QIN Cheng,YANG Chen,et al.In-situ LID and electrical-injection regeneration of PERC solar cells made from different positions of a boron-doped Cz-Si ingot[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(01):115-123.
丁思琪,覃诚,杨宸等.基于不同位置掺硼直拉单晶硅片的PERC电池的原位光衰及电注入复原[J].中山大学学报(自然科学版),2023,62(01):115-123. DOI: 10.13471/j.cnki.acta.snus.2022B048.
DING Siqi,QIN Cheng,YANG Chen,et al.In-situ LID and electrical-injection regeneration of PERC solar cells made from different positions of a boron-doped Cz-Si ingot[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(01):115-123. DOI: 10.13471/j.cnki.acta.snus.2022B048.
将1根商业化太阳能级掺硼直拉单晶硅(Cz-Si,Czochralski silicon)棒,从头至尾间隔一定距离切割出5组硅片,采用标准工业化工艺流程将它们制成钝化发射极和背面电池(PERC,passivated emitter and rear cell),然后对其进行了暗退火(200 ℃,30 min)→第1次光衰(45 ℃,1 sun,12 h)→电注入复原(175 ℃,18 A,30 min)→第2次光衰(45 ℃,1 sun,12 h)处理,并对其在处理过程中的性能变化进行了跟踪测试。结果表明,所制备的PERC电池的光衰(LID,light induced degradation)和复原(regeneration)由B-O缺陷的光衰和复原反应起主导作用,而Fe-B对的分解起次要作用。第1次光衰时7.03%~9.69%的效率相对降级率,由B-O缺陷引起的光衰和Fe-B对的分解共同造成;而第2次光衰时0.43%~0.81%的效率相对降级率,由Fe-B对的分解单独造成。电注入复原能够完全钝化PERC电池内部的B-O缺陷,且钝化后的B-O缺陷在第2次光衰条件下是稳定的。由硅棒中部硅片制成的PERC电池具有更高的效率和开路电压以及更低的相对衰减率。此外,光衰和复原处理只影响PERC电池在中长波段的光谱响应。
Five groups of silicon wafers were cut from a commercial solar-grade boron-doped Czochralski silicon (Cz-Si) ingot from top to bottom with a certain distance, and made into PERC (passivated emitter and rear cell) solar cells by using the standard industrial process. Then, as-prepared PERC solar cells were treated by dark annealing (200 ℃, 30 min), the 1st LID (45 ℃, 1 sun, 12 h), electric-injection regeneration (175 ℃, 18 A, 30 min) and the 2nd LID (45 ℃, 1 sun, 12 h) in order, and the changes of performance during the process were measured. The results show that the LID (light induced degradation) and regeneration of the PERC solar cells are dominated by those of B-O defects, while dissociation of Fe-B pairs plays a secondary role. The relative degradation rate of 7.03%~9.69% in efficiency during the 1st LID results from the LID caused by B-O defects and the dissociation of Fe-B pairs, while the relative degradation rate of 0.43%~0.81% in efficiency during 2nd LID is solely caused by the dissociation of Fe-B pairs. B-O defects inside PERC solar cells can be completely passivated by the electric injection regeneration, and the passivated B-O defects are stable under the conditions of 2nd LID. PERC solar cells made from the middle of the Czochralski silicon ingot have higher efficiency and open circuit voltage and lower relative degradation rate. In addition, only the spectral response of PERC solar cells in medium and long wavelength range is affected by the LID and regeneration treatment.
PERC电池光致衰减电注入复原B-O缺陷
PERC solar celllight induced degradation(LID)electrical-injection regenerationB-O defect
中国光伏行业协会,赛迪智库集成电路研究所. 中国光伏产业发展路线图(2021年版)[R/OL].(2022-02-23)[2022-06-10].http://www.chinapv.org.cn/road_map/1016.htmlhttp://www.chinapv.org.cn/road_map/1016.html.
Verband Deutscher Maschinen- und Anlagenbau. International technology roadmap for photovoltaic(ITRPV):2021 results[R/OL].(2022-04-14)[2022-06-10]. https://www.vdma.org/international-technology-roadmap-photovoltaichttps://www.vdma.org/international-technology-roadmap-photovoltaic.
HALLAM B, HERGUTH A, HAMER P, et al. Eliminating light-induced degradation in commercial p-type Czochralski silicon solar cells [J]. Applied Sciences, 2018, 8(1): 10.
YAKIMOV E B. Metal impurities and gettering in crystalline silicon [M] // YANG D,ed. Handbook of photovoltaic silicon. Heidelberg: Springer-Verlag GmbH, 2019: 495-540.
WEBER E R. Transition metals in silicon [J]. Applied Physics A, 1983, 30(1): 1-22.
HERGUTH A, HORBELT R, WILKING S, et al. Comparison of BO regeneration dynamics in PERC and Al-BSF solar cells [J]. Energy Procedia, 2015, 77: 75-82.
FERTIG F, KRAUß K, REIN S. Light-induced degradation of PECVD aluminium oxide passivated silicon solar cells [J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2015, 9(1): 41-46.
CHO E, ROHATGI A, OK Y-W. Comparison of light-induced degradation and regeneration in P-type monocrystalline full aluminum back surface field and passivated emitter rear cells [J]. Current Applied Physics, 2018, 18(12): 1600-1604.
HERGUTH A, DERRICKS C, SPERBER D. A detailed study on light-induced degradation of Cz-Si PERC-type solar cells: Evidence of rear surface-related degradation [J]. IEEE Journal of Photovoltaics, 2018, 8(5): 1190-1201.
FERTIG F, LANTZSCH R, FRüHAUF F, et al. Excessive light-induced degradation in boron-doped Cz silicon PERC triggered by dark annealing [J]. Solar Energy Materials and Solar Cells, 2019, 200: 109968.
HELMICH L, WALTER D C, SCHMIDT J. Direct examination of the deactivation of the boron-oxygen center in Cz-Si solar cells under regeneration conditions via electroluminescence [J]. IEEE Journal of Photovoltaics, 2019, 9(6): 1472-1476.
YE J, AI B, JIN J, et al. Study on the electrical injection regeneration of industrialized B-doped Czochralski silicon PERC solar cells [J]. International Journal of Photoenergy, 2019: 5357370.
梁润雄,艾斌,金井升,等. 利用正交实验法探究掺硼p型单晶硅PERC电池的电致复原最优条件[J]. 中山大学学报(自然科学版),2019,58(6):81-89.
SEOK M-G, KIM J, LEE Y, et al. Treatment of light-induced degradation for solar cells in a p-PERC solar module via induction heating [J]. Energies, 2021, 14(19): 6352.
YUAN S, DING S, AI B, et al. In situ LID and regeneration of PERC solar cells from different positions of a B-doped Cz-Si ingot [J]. International Journal of Photoenergy, 2022: 6643133.
WAGNER M, WOLNY F, HENTSCHE M, et al. Correlation of the LeTID amplitude to the aluminium bulk concentration and oxygen precipitation in PERC solar cells [J]. Solar Energy Materials and Solar Cells, 2018, 187: 176-188.
SHABANI M B, YAMASHITA T, MORITA E. Metallic impurities in mono and multi-crystalline silicon and their gettering by phosphorus diffusion [J]. ECS Transactions, 2008, 16(6): 179.
MIYAMURA Y, HARADA H, NAKANO S, et al. Relationship between carbon concentration and carrier lifetime in Cz-Si crystals [J]. Journal of Crystal Growth, 2018, 486: 56-59.
SCHMIDT J. Effect of dissociation of iron-boron pairs in crystalline silicon on solar cell properties [J]. Progress in Photovoltaics: Research and Applications, 2005, 13(4): 325-331.
SCHMIDT J, BOTHE K, MACDONALD D, et al. Electronically stimulated degradation of silicon solar cells [J]. Journal of Materials Research, 2006, 21(1): 5-12.
NIEWELT T, SCHÖN J, WARTA W, et al. Degradation of crystalline silicon due to boron-oxygen defects [J]. IEEE Journal of Photovoltaics, 2017, 7(1): 383-398.
LINDROOS J, SAVIN H. Review of light-induced degradation in crystalline silicon solar cells [J]. Solar Energy Materials and Solar Cells, 2016, 147: 115-126.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构