中山大学航空航天学院,广东 深圳 518107
周朗(1997年生),男;研究方向:高超声速飞行器减阻;E-mail:zhoulang5@mail2.sysu.edu.cn
徐春光(1977年生),男;研究方向:高精度气动力热模拟;E-mail:xuchg5@mail.sysu.edu.cn
纸质出版日期:2023-03-25,
网络出版日期:2022-10-20,
收稿日期:2022-04-17,
录用日期:2022-05-23
扫 描 看 全 文
周朗,徐春光.类X-51A飞行器尖锐前缘多孔逆向喷流降热[J].中山大学学报(自然科学版),2023,62(02):156-164.
ZHOU Lang,XU Chunguang.The heat reduction performance at sharp leading edges of an X-51A-like aircraft with porous counterflowing jet[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(02):156-164.
周朗,徐春光.类X-51A飞行器尖锐前缘多孔逆向喷流降热[J].中山大学学报(自然科学版),2023,62(02):156-164. DOI: 10.13471/j.cnki.acta.snus.2022B038.
ZHOU Lang,XU Chunguang.The heat reduction performance at sharp leading edges of an X-51A-like aircraft with porous counterflowing jet[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(02):156-164. DOI: 10.13471/j.cnki.acta.snus.2022B038.
采用三维N-S方程和SST
k-ω
湍流模型,对类X-51A飞行器尖锐前缘多孔逆向喷流流场进行了数值模拟。利用文献实验模型,对数值模拟方法的准确性进行了验证。在此基础上,对不同孔径、孔距和喷孔扩张角下,逆向喷流的降热机理和效果进行了分析。结果表明,在多孔逆向喷流配置合适的情况下,会显著改变飞行器前缘流场结构,能有效降低飞行器前缘热流。随着喷孔扩张角和孔径的增加,降热效果有所提升;随着喷孔直径的减小,降热性能降低。此外,建立了孔径和孔距的关联参数,发现在孔径与孔距比值一定时,孔径越小,降热性能越好。
We carried out numerical simulations of the flow field of the sharp leading edges of an X-51A-like aircraft using the three-dimensional Navier-Stokes(N-S) equations and the SST
k-ω
turbulence model after verifying the accuracy of the numerical simulation method by comparing it with the experimental data from the published literature. On this basis
we analyzed the heat reduction mechanism and effect of the sharp leading edges with the porous counterflowing jet under different jet exit sizes
jet pitches
and jet expansion angles. The results show that the configuration of the porous counterflowing jet significantly affects the flow field at the leading edge of the vehicle and proper configurations can effectively reduce the heat. Increasing the jet pitch reduces the heat flux of the sharp leading edges; enlarging the jet exit size and jet expansion angle brings similar effects. Moreover
for the same parameter
R
L
which is the ratio of jet pitch and exit size
the smaller the exit size of the counterflowing jet
the more heat reduction.
高超声速降热多孔逆向喷流尖锐前缘
hypersonicheat reductionporouscounterflowing jetsharp leading edges
邓帆, 谢峰, 黄伟, 等, 2017. 逆向喷流技术在高超声速飞行器上的应用[J]. 空气动力学学报, 35(4): 485-495.
董昊, 张旭东, 刘是成, 等, 2022. 高超声速逆向喷流数值模拟和风洞试验[J]. 空气动力学学报, 40(4): 101-109.
高广宇, 刘冰, 黄伟, 等, 2021. 高超声速飞行器逆向射流减阻防热技术综述[J]. 战术导弹技术, (4): 67-75, 135.
冀晨, 刘冰, 李世斌, 等, 2021. 超声速气流中多孔逆向射流减阻防热机理研究[J]. 战术导弹技术, (1): 44-51.
王立强, 钱勤建, 2019. 钝体逆向喷流减阻降温数值模拟[J]. 弹箭与制导学报, 39(1): 55-59.
王振清, 吕红庆, 雷红帅, 2010. 钝体前缘喷流热防护数值分析[J]. 宇航学报, 31(5): 1266-1271.
中国人民解放军总装备部军事训练教材编辑工作委员会, 2005. 再入物理[M]. 北京: 国防工业出版社.
BARZEGAR GERDROODBARY M, BISHEHSARI S, HOSSEINALIPOUR S M, et al, 2012. Transient analysis of counterflowing jet over highly blunt cone in hypersonic flow[J]. Acta Astronaut, 73: 38-48.
DENG F, XIE F, HUANG W, et al, 2018. Numerical exploration on jet oscillation mechanism of counterflowing jet ahead of a hypersonic lifting-body vehicle[J]. Sci China Technol Sci, 61(7): 1056-1071.
FINLEY P J, 1966. The flow of a jet from a body opposing a supersonic free stream[J]. J Fluid Mech, 26(2): 337-368.
GERDROODBARY M B, 2014. Numerical analysis on cooling performance of counterflowing jet over aerodisked blunt body[J]. Shock Waves, 24(5): 537-543.
HAYASHI K, ASO S, 2003. Effect of pressure ratio on aerodynamic heating reduction due to opposing jet[C]//36th AIAA Thermophysics Conference. USA. DOI:https://doi.org/10.2514/6.2003-4041http://dx.doi.org/https://doi.org/10.2514/6.2003-4041.
HAYASHI K, ASO S, TANI Y, 2006. Experimental study on thermal protection system by opposing jet in supersonic flow[J]. J Spacecr Rockets, 43(1): 233-235.
HUANG W, 2015. A survey of drag and heat reduction in supersonic flows by a counterflowing jet and its combinations[J]. J Zhejiang Univ Sci A, 16(7): 551-561.
RONG Y , SUN J , LIU W, et al, 2012. Heat flux reduction research in hypersonic flow with opposing jet[J]. World Academy of Science Engineering & Technology,6(8):1786-1790.
SRIRAM R, JAGADEESH G, 2009. Film cooling at hypersonic Mach numbers using forward facing array of micro-jets[J]. Int J Heat Mass Transf, 52(15/16): 3654-3664.
STALDER J R, INOUYE M, 1956. A method of reducing heat transfer to blunt bodies by air injection[R]. National Aeronautics and Space Administration. USA.
TAMADA I, ASO S , TANI Y, 2008. Numerical study of the effect of the opposing jet on reduction of aerodynamic heating with different nose configurations [C]//26th Congress of International Council of the Aeronautical Sciences. USA.
VENKATACHARI B S, ITO Y, CHENG G, et al, 2011. Numerical investigation of the interaction of counterflowing jets and supersonic capsule flows[C]//42nd AIAA Thermophysics Conference. Hawaii,USA.
WARREN C H E, 1960. An experimental investigation of the effect of ejecting a coolant gas at the nose of a bluff body[J]. J Fluid Mech, 8(3): 400.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构