中山大学航空航天学院,广东 深圳 518107
胡玲玲(1980年生),女;研究方向:力学;E-mail:hulingl@mail.sysu.edu.cn
殷秋运(1990年生),男;研究方向:力学;E-mail:yinqy5@mail.sysu.edu.cn
纸质出版日期:2022-11-25,
网络出版日期:2022-05-07,
收稿日期:2022-03-31,
录用日期:2022-04-16
扫 描 看 全 文
胡玲玲,刘宏宇,殷秋运.微结构对NiTi形状记忆合金相变行为影响的分子动力学模拟[J].中山大学学报(自然科学版),2022,61(06):81-88.
HU Lingling,LIU Hongyu,YIN Qiuyun.The effect of microstructure on the phase transformation behavior of NiTi shape memory alloys: A molecular simulation[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(06):81-88.
胡玲玲,刘宏宇,殷秋运.微结构对NiTi形状记忆合金相变行为影响的分子动力学模拟[J].中山大学学报(自然科学版),2022,61(06):81-88. DOI: 10.13471/j.cnki.acta.snus.2022B034.
HU Lingling,LIU Hongyu,YIN Qiuyun.The effect of microstructure on the phase transformation behavior of NiTi shape memory alloys: A molecular simulation[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(06):81-88. DOI: 10.13471/j.cnki.acta.snus.2022B034.
NiTi形状记忆合金复杂的相变与塑性变行为与其微结构演化密切相关。通过分子动力学模拟,文章研究了晶界、初始微缺陷对于NiTi合金动力学响应行为的影响。结果表明,晶界能是影响多晶NiTi合金相变应力的主控因素之一。随着晶界能的减小,马氏体相变应力逐渐减小。另外,刃型位错条件下,NiTi合金主要发生B19塑性滑移。Ti空位缺陷与螺型位错条件下,存在B19→B19’相变行为与塑性变形竞争。二者区别主要在于影响NiTi合金塑性变形模式。Ti空位缺陷条件下,以塑性滑移变形为主导。螺型位错条件下,以孪晶塑性变形为主导。
The microstructure evolution dominates the complicated phase transformation and plastic deformation of NiTi shape memory alloys (SMAs). In the present study, the effects of grain boundary energy and initial micro-defects on the mechanical behavior of NiTi are investigated through molecular dynamics simulation. It is found that the grain boundary energy is one of the main controlling factors for the phase transformation behavior of NiTi. The martensite transformation stress decreased with the decrease of grain boundary energy. In addition, NiTi alloys with initial edge dislocation mainly experience B19 plastic deformation. Moreover, under initial Ti-vacancy defects and screw dislocation condition, the competition of phase transformation and plastic deformation is observed. The difference is the dominated the plastic deformation modes of NiTi. NiTi with initial Ti-vacancy mainly experiences dislocation slide while NiTi with initial screw dislocation mainly experiences twinning deformation.
NiTi形状记忆合金晶界微缺陷相变
NiTi shape memory alloysgrain boundarymicro-defectsphase transformation
COSTANZA G, TATA M E. A novel methodology for solar sail opening employing shape memory alloy elements [J]. Journal of intelligent material systems and structures, 2018, 29(9): 1793-1798.
BIESIEKIERSKI A, WANG J, GEPREEL A H, et al. A new look at biomedical Ti-based shape memory alloys [J]. Acta Biomaterialia, 2012, 8(5): 1661-1669.
PEQUEGNAT A, VLASCOV M, DALY M, et al. Dynamic actuation of a multiple memory material processed nitinol linear actuator[C]//Proceedings of the ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, F, 2011.
CHEN W W, WU Q P, KANG J H, et al. Compressive superelastic behavior of a NiTi shape memory alloy at strain rates of 0.001-750 s-1 [J]. International Journal of Solids & Structures, 2001, 38(50/51): 8989-8998.
NEMAT-NASSER S, GUO W G. Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures [J]. Mechanics of Materials, 2006,38(5/6):463-474.
LIAO Y, CHANG Y, DONG L, et al. Deformation induced martensite in NiTi and its shape memory effects generated by low temperature laser shock peening [J]. Journal of Applied Physics, 2012, 112(3): 178-186.
夏伟光, 吴先前, 魏延鹏, 等. 激光冲击强化对NiTi形状记忆合金力学性质的影响 [J]. 中国激光, 2013,40(11):1103002.
MITWALLY M E, FARAG M. Effect of cold work and annealing on the structure and characteristics of NiTi alloy [J]. Materials Science & Engineering A, 2009, 519(1/2): 155-166.
AHADI A, SUN Q. Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi [J]. Acta Materialia, 2014, 76:186-197.
SHARIAT B S, MENG Q, MAHMUD A S, et al. Functionally graded shape memory alloys: Design, fabrication and experimental evaluation [J]. Materials & Design, 2017, 124(Supplement C): 225-237.
AHADI A, SUN Q. Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi—Effects of grain size [J]. Applied Physics Letters, 2013, 103(2): 021902.
CHEN J, WU Y, YIN H. In situ multi-field investigation of grain size effects on the rate-dependent thermomechanical responses of polycrystalline superelastic NiTi [J]. Materials Letters, 2020, 259(15):126845.
GUR S, FRANTZISKONIS G N, MURALIDHARAN K. Atomistic simulation of shape memory effect(SME) and superelasticity(SE) in nano-porous NiTi shape memory alloy(SMA) [J]. Computational Materials Science, 2018, 152:28-37.
KO W-S, GRABOWSKI B, NEUGEBAUER J. Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition [J]. Physical Review B, 2015, 92(13):134107.
XIE G, WANG F, SONG B, et al. Grain size dependence of cracking performance in polycrystalline NiTi alloys [J]. Journal of Alloys and Compounds, 2021, 884:161132.
ZHONG Y, GALL K, ZHU T. Atomistic study of nanotwins in NiTi shape memory alloys [J]. Journal of Applied Physics, 2011, 110(3):033532.
KO W S, MAISEL S B, GRABOWSKI B, et al. Atomic scale processes of phase transformations in nanocrystalline NiTi shape-memory alloys [J]. Acta Materialia, 2017, 123:90-101.
ZHONG Y, GALL K, ZHU T. Atomistic characterization of pseudoelasticity and shape memory in NiTi nanopillar [J]. Acta Materialia, 2012,60:6301-6311.
MIRZAEIFAR R, GALL K, ZHU T, et al. Structural transformations in NiTi shape memory alloy nanowires [J]. Journal of Applied Physics, 2014, 115(19):635-311.
WANG B, KANG G, KAN Q, et al. Molecular dynamics simulations to the pseudo-elasticity of NiTi shape memory alloy nano-pillar subjected to cyclic compression[J]. Computational Materials Science, 2017, 131:132-138.
PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995,117(1):1-19.
NOSÉ S. A unified formulation of the constant temperature molecular dynamics methods [J]. The Journal of Chemical Physics, 1984, 81(1): 130511.
BYEONG-JOO L,BASKES M I,HANCHUL K, et al. Second nearest-neighbor modified embedded atom method potentials for bcc transition metals [J]. Physical Review B, 2001,64:184102.
STUKOWSKI A. Structure identification methods for atomistic simulations of crystalline materials [J]. Simulation in Materials Science Engineering, 2012, 20(4): 045021.
卢柯, 刘学东. 纳米晶体材料的Hall-Petch关系 [J]. 材料研究学报, 1994, 8(5): 385-391.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构