1.中山大学土木工程学院,广东 珠海 519082
2.陆军工程大学爆炸冲击防灾减灾国家重点实验室,江苏 南京 210007
3.南方海洋科学与工程广东省实验室,广东 珠海 519082
马建军(1983年生),男;研究方向:重大工程防灾减灾;E-mail:majianjun@mail.sysu.edu.cn
陈万祥(1977年生),男;研究方向:结构抗冲击爆炸效应;E-mail:chenwx77@mail.sysu.edu.cn
纸质出版日期:2023-05-25,
网络出版日期:2023-01-31,
收稿日期:2022-03-21,
录用日期:2022-05-09
扫 描 看 全 文
马建军,陈建营,陈万祥等.圆柱形装药不确定爆炸作用下钢管RPC柱的破坏机理[J].中山大学学报(自然科学版),2023,62(03):68-78.
MA Jianjun,CHEN Jianying,CHEN Wanxiang,et al.Failure mechanisms of RPC-filled steel tubular columns under uncertain loading induced by cylindrical charge[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(03):68-78.
马建军,陈建营,陈万祥等.圆柱形装药不确定爆炸作用下钢管RPC柱的破坏机理[J].中山大学学报(自然科学版),2023,62(03):68-78. DOI: 10.13471/j.cnki.acta.snus.2022B031.
MA Jianjun,CHEN Jianying,CHEN Wanxiang,et al.Failure mechanisms of RPC-filled steel tubular columns under uncertain loading induced by cylindrical charge[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(03):68-78. DOI: 10.13471/j.cnki.acta.snus.2022B031.
对不确定爆炸作用下的钢管RPC柱动态响应进行数值模拟,分析钢管RPC柱的破坏机理。采用LS-DYNA软件,对圆柱形装药在不同放置方式、长径比和起爆点下的爆炸作用进行数值模拟,分析比例距离为0.4~0.8 m/kg
1/3
时的爆炸荷载分布规律,得到反射超压峰值均值和最大值的多项式拟合,并建立了不确定爆炸荷载模型。将统计荷载简化为等效爆炸荷载施加于钢管RPC柱表面,对其动态响应和破坏机理进行分析。结果表明:反射超压峰值服从正态分布,钢管RPC柱在不确定爆炸作用下表现出跨中部位发生明显弯曲变形,而靠近支座部位发生剪切变形;以爆炸荷载的平均值和最大值来预测钢管RPC柱的损伤状况时,后者得到的破坏程度明显大于前者,且结构更趋于剪切破坏。
Dynamic responses of RPC-filled steel tubular (RPC-FST) columns under uncertain blast loading are investigated, and the failure mechanisms are further analyzed. The blast loads, induced by cylindrical charge with different orientations, length-to-diameter ratios and detonation positions, are simulated using LS-DYNA software. The distributions of shock waves caused by explosive charge with scaled distance ranging from 0.4 m/kg
1/3
to 0.8 m/kg
1/3
is obtained, and normal distribution tests are carried out based on the numerical results. The polynomial fitting formulas for average and maximum values of peak reflected overpressure are achieved, and the uncertain blast models are finally presented. The dynamic responses and failure mechanisms of the RPC-FST column are analyzed systematically by simplifying the statistical loads into equivalent loads. Results show that the reflected overpressure follows normal distribution. The bending deformations can be observed in the middle span of the RPC-FST column, while shear deformations are found near the support. More severe damage can be observed in the RPC-FST column subjected to maximum blast loading compared to the average value, and the structure tends to shear failure.
钢管RPC柱不确定爆炸荷载正态分布动态响应破坏机理
RPC-filled steel tubular columnuncertain blast loadinglognormal distributiondynamic responsefailure mechanism
蔡绍怀, 2007.现代钢管混凝土结构[M]. 2版. 北京: 人民交通出版社.
陈万祥, 郭志昆, 邹慧辉, 等, 2017. 标准火灾后钢管RPC柱抗近距离爆炸荷载的试验研究[J]. 工程力学, 34(1): 180-191.
崔莹, 赵均海, 张常光, 等, 2015. 复式空心钢管混凝土柱抗爆性能及损伤研究[J]. 振动与冲击, 34(21): 188-193+216.
方秦, 柳锦春, 2010. 地下防护结构[M]. 北京: 中国水利水电出版社.
方秦, 吴平安, 2003. 爆炸荷载作用下影响RC梁破坏形态的主要因素分析[J]. 计算力学学报, 20(1): 39-42+48.
冯红波, 赵均海, 魏雪英, 等, 2007. 爆炸荷载作用下钢管混凝土柱的有限元分析[J]. 解放军理工大学学报(自然科学版), 8(6): 680-684.
李国强, 瞿海雁, 杨涛春, 等, 2013. 钢管混凝土柱抗爆性能试验研究[J]. 建筑结构学报, 34(12): 69-76.
钟善桐, 2006. 钢管混凝土统一理论: 研究与应用[M]. 北京: 清华大学出版社.
ASCE, 2011. Blast protection of buildings[M]. Reston, Va.: American Society of Civil Engineers/Structural Engineering Institute.
BAKER W E, 1973. Explosions in air[M]. Austin: University of Texas Press.
BAMBACH M R, 2011. Design of hollow and concrete filled steel and stainless steel tubular columns for transverse impact loads[J]. Thin-Walled Structures, 49(10): 1251-1260.
BOGOSIAN D, FERRITTO J, SHI Y J, 2002. Measuring uncertainty and conservatism in simplified blast models[J]. Environment Science:16553156.
BRODE H L,1959. Blast wave from a spherical charge[J]. Physics of Fluids, 2(2): 217.
CHEN W, PAN J, GUO Z, et al, 2019. Damage evaluations of fire-damaged RPC-FST columns under blast loading[J]. Thin-Walled Structures, 134: 319-332.
CORMIE D, WILLKINSON W, SHIN J, 2013. Scaled-distance relationships for close-in detonations [C]//International Symposium on the Interaction of the Effects of Munitions with Structures. Potsdam, Germany.
FUJIKURA S, BRUNEAU M, LOPEZ-GARCIA D,2008. Experimental investigation of multihazard resistant bridge piers having concrete-filled steel tube under blast loading[J]. Journal of Bridge Engineering, 13(6): 586-594.
HENRYCH J, 1979. The dynamics of explosion and its use[M]. Amsterdam:Elsevier Scientific Publishing Company.
HU Y, CHEN L, FANG Q, et al, 2018. Blast loading model of the RC column under close-in explosion induced by the double-end-initiation explosive cylinder[J]. Engineering Structures, 175: 304-321.
LOW H Y, HAO H, 2001. Reliability analysis of reinforced concrete slabs under explosive loading[J]. Structural Safety, 23(2): 157-178.
NETHERTON M D, STEWART M G, 2010. Blast load variability and accuracy of blast load prediction models[J]. International Journal of Protective Structures, 1(4): 543-570.
REMENNIKOV A M, UY B, 2014. Explosive testing and modelling of square tubular steel columns for near-field detonations[J]. Journal of Constructional Steel Research, 101: 290-303.
RICHARD P, CHEYREZY M,1995. Composition of reactive powder concretes[J]. Cement and Concrete Research, 25(7): 1501-1511.
TOLBA A F F, 2001. Response of FRP-retrofitted reinforced concrete panels to blast loading[D]. Canada: Carleton University.
WANG H W, WU C Q, ZHANG F R, et al, 2017. Experimental study of large-sized concrete filled steel tube columns under blast load[J]. Construction and Building Materials, 134: 131-141.
WILKINSON W, CORMIE D, SHIN J, 2013. Modeling close-in detonations in the near field [C]//International Symposium on the Interaction of the Effects of Munitions with Structures. Potsdam, Germany.
ZHANG X, HAO H, LI M, et al, 2020. The blast resistant performance of concrete-filled steel-tube segmental columns[J]. Journal of Constructional Steel Research, 168: 105997.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构