1.中山大学航空航天学院,广东 深圳 518107
2.中国航天科工信息技术研究院,北京 100144
潘礼规(1997年生),男;研究方向:无人机集群协同定位算法;E-mail:panlg3@mail2.sysu.edu.cn
徐春光(1977年生),男;研究方向:精密定轨算法及应用;E-mail:xuchg5@mail.sysu.edu.cn
纸质出版日期:2023-05-25,
网络出版日期:2022-10-20,
收稿日期:2022-03-08,
录用日期:2022-06-08
扫 描 看 全 文
潘礼规,尹佳琪,徐春光.基于载波相位观测的无人机集群相对定位方法[J].中山大学学报(自然科学版),2023,62(03):125-136.
PAN Ligui,YIN Jiaqi,XU Chunguang.Relative positioning method for UAV clusters based on carrier phase observation[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(03):125-136.
潘礼规,尹佳琪,徐春光.基于载波相位观测的无人机集群相对定位方法[J].中山大学学报(自然科学版),2023,62(03):125-136. DOI: 10.13471/j.cnki.acta.snus.2022B022.
PAN Ligui,YIN Jiaqi,XU Chunguang.Relative positioning method for UAV clusters based on carrier phase observation[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(03):125-136. DOI: 10.13471/j.cnki.acta.snus.2022B022.
针对无人机集群的相对定位问题,提出了以载波相位为观测量的相对定位方法。首先,设计了一种具有三角几何关系的天线构型,并建立一种无人机间的相对观测模型。其次,利用扩展卡尔曼滤波算法估计无人机位置、速度状态参数,从而解算出无人机姿态角及其角速率参数。最后,为研究无人机集群的协同定位性能,将一架主无人机扩展至3架主无人机,从而获得主无人机数量和疏密分布情况对从无人机定位精度的影响。仿真结果表明:该机间相对观测模型可有效估计出从无人机位置、速度状态参数,并据此解算出的无人机姿态角及姿态角速率参数能够满足精度要求,验证了该方法的可行性。此外,在增加主无人机数量以及分散布置的情况下,该方法可显著提高无人机的状态估计精度。
We proposed a new method for the relative positioning problem in UAV clusters using carrier phase as the observation data, which includes three features. First, an antenna configuration with a triangular geometric relationship is designed to build a relative observation model between UAVs. Second, the extended Kalman filter algorithm is utilized to calculate the UAV position and velocity state parameters. The UAV attitude angle and its angular rate parameters are further solved. Third, to study the cooperative positioning performance of UAV clusters, one master UAV is extended to three master UAVs, thus obtaining the effect of the number and layout of master UAVs on UAV positioning accuracy. The simulation results show that the inter-aircraft relative observation model can effectively estimate the UAV position and velocity state parameters. The further solved UAV attitude angle and its angular rate parameters can meet the accuracy requirements, which verifies the feasibility of the method. In addition, with an increased number of master UAVs and a decentralized layout, the method can significantly improve the accuracy of the UAV's state estimation.
无人机集群相对定位载波相位扩展卡尔曼滤波
UAV clusterrelative positioningcarrier phaseextended Kalman filter
蔡杰,王菲菲,杨彬, 2020. 无人机集群防御技术探索[J]. 飞航导弹, (12): 32-35+48.
樊琼剑,杨忠,方挺,等, 2009. 多无人机协同编队飞行控制的研究现状[J]. 航空学报, 30(4): 683-691.
谷旭平, 唐大全, 2022. 基于联邦滤波算法的无人机集群分层协同导航[J]. 系统工程与电子技术,44(3):967-976.
刘晓洋,李瑞涛,徐胜红, 2019a. 基于测距/测速信息的无人机协同导航算法研究[J]. 战术导弹技术, (2): 73-77+112.
刘晓洋,徐胜红, 2019b. 无人机编队分层式协同导航仿真研究[J]. 计算机仿真, 36(10): 44-48.
潘瑞鸿,徐胜红, 2017. 基于几何特性的多无人机协同导航算法[J]. 兵器装备工程学报, 38(10): 55-59+96.
彭建帅, 付兴建, 2023. 仿雁群行为的领航-跟随无人机编队控制[J]. 控制工程, 30(1): 113-118.
秦永元,张洪钺,汪叔华, 2015. 卡尔曼滤波与组合导航原理[M]. 3版. 西安: 西北工业大学出版社.
王念曾,李荣冰,韩志凤,等,2019.基于惯性/GNSS/UWB的小型无人机相对导航算法研究[J].电子测量技术,42(16):94-100.
王祥科,陈浩,赵述龙, 2021. 大规模固定翼无人机集群编队控制方法[J]. 控制与决策, 36(9): 2063-2073.
熊骏,熊智,于永军,等, 2018. 超宽带测距辅助的无人机近距离相对导航方法[J]. 中国惯性技术学报, 26(3): 346-351.
许晓伟,赖际舟,吕品,等, 2017. 多无人机协同导航技术研究现状及进展[J]. 导航定位与授时, 4(4): 1-9.
詹光,万婧, 2019. 无人机编队飞行控制中的气动耦合问题[J]. 复旦学报:自然科学版, 58(1): 14-18+24.
宗群,王丹丹,邵士凯,等, 2017. 多无人机协同编队飞行控制研究现状及发展[J]. 哈尔滨工业大学学报, 49(3): 1-14.
LAU S Y, NAEEM W, 2015. Co-operative tensegrity-based formation control algorithm for a multi-aircraft system[C]//2015 American Control Conference (ACC). Chicago, USA. 750-756.
RICHERT D, CORTÉS J, 2013. Optimal leader allocation in UAV formation pairs ensuring cooperation[J]. Automatica,49(11): 3189-3198.
SHORAKAEI H, VAHDANI M, IMANI B, et al, 2016. Optimal cooperative path planning of unmanned aerial vehicles by a parallel genetic algorithm[J]. Robotica, 34(4): 823-836.
XU H, WANG L, ZHANG Y, et al, 2020. Decentralized visual-inertial-UWB fusion for relative state estimation of aerial swarm[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). Paris, France. 8776-8782.
ZHANG X Y, DUAN H B, 2015. An improved constrained differential evolution algorithm for unmanned aerial vehicle global route planning[J]. Applied Soft Computing, 26: 270-284.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构