中山大学材料科学与工程学院,广东 广州 510275
李蓉(1998年生),女;研究方向:分子模拟;E-mail:lirong68@mail2.sysu.edu.cn
刘书乐(1985年生),男;研究方向:计算材料学;E-mail:liushle@mail.sysu.edu.cn
纸质出版日期:2022-11-25,
网络出版日期:2022-04-20,
收稿日期:2022-02-10,
录用日期:2022-02-28
扫 描 看 全 文
李蓉,梁斐,丁静等.氯化物熔盐纳米流体热物性强化的分子动力学模拟[J].中山大学学报(自然科学版),2022,61(06):129-135.
LI Rong,LIANG Fei,DING Jing,et al.Molecular dynamics simulations of thermophysical properties enhancement of chloride molten salt based nanofluid[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(06):129-135.
李蓉,梁斐,丁静等.氯化物熔盐纳米流体热物性强化的分子动力学模拟[J].中山大学学报(自然科学版),2022,61(06):129-135. DOI: 10.13471/j.cnki.acta.snus.2022B013.
LI Rong,LIANG Fei,DING Jing,et al.Molecular dynamics simulations of thermophysical properties enhancement of chloride molten salt based nanofluid[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(06):129-135. DOI: 10.13471/j.cnki.acta.snus.2022B013.
采用分子动力学模拟方法,对掺杂MgO纳米颗粒的NaCl熔盐纳米流体进行了模拟研究。通过对体系热导率、比热容、数密度分布和配位数的计算,研究了其热物性及传热机理。研究结果表明:在掺杂MgO纳米颗粒后,NaCl熔盐纳米流体的热导率和比热容均有一定幅度的提高。同时,对体系固液界面微结构进行分析,发现:NaCl熔盐在任意半径的MgO颗粒表面都能形成紧密有序的吸附层,这是引起熔盐传蓄热性能改善的重要原因之一。
In this study, molecular dynamics (MD) simulations were performed to simulate NaCl-MgO based nanofluid at microscopic level. We have studied the thermophysical properties of NaCl-MgO based nanofluid and the enhancement mechanisms of thermal properties via thermal conductivity, specific heat capacity, number density distribution and coordination number calculations. Simulation results indicates that the thermal conductivity and specific heat capacity of the NaCl-MgO based nanofluid are improved after adding MgO nanoparticles to NaCl molten salt. Based on the analysis of microscopic structures at the NaCl-MgO solid-liquid interface, we found that NaCl molten salt can form ordered adsorption layers at the surface of MgO nanoparticles, and this is directly related to the enhancement of thermophysical properties of nanofluids.
分子动力学熔盐纳米流体热导率比热容界面
molecular dynamicsmolten saltnanofluidthermal conductivityspecific heat capacityinterface
王学良. 金属Ni、Cr和Fe在氯化物熔盐中的腐蚀行为及机理研究 [D]. 上海: 中国科学院大学(中国科学院上海应用物理研究所), 2020.
沈向阳,丁静,彭强,等. 高温熔盐在太阳能热发电中的应用 [J]. 广东化工, 2007, 34(11): 49-52.
程进辉. 传蓄热熔盐的热物性研究 [D]. 上海: 中国科学院研究生院(上海应用物理研究所), 2014.
ZHANG J, FULLER J, AN Q. Coordination and thermophysical properties of transition metal chlorocomplexes in LiCl-KCl eutectic [J]. J Phys Chem B, 2021, 125(31): 8876-8887.
魏小兰,谢佩,张雪钏,等. 氯化物熔盐材料的制备及其热物理性质研究 [J]. 化工学报, 2020, 71(5): 2423-2431.
LI Z, CUI L, LI B, et al. Enhanced heat conduction in molten salt containing nanoparticles: Insights from molecular dynamics [J]. Int J Heat Mass Transf, 2020, 153(7): 119578.
YU Y, ZHAO C, TAO Y, et al. Superior thermal energy storage performance of NaCl-SWCNT composite phase change materials: A molecular dynamics approach [J]. Appl Energy, 2021, 290(2): 116799.
LIU M, SAMAN W, BRUNO F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems [J]. Renew Sustain Energy Rev , 2012, 16(4): 2118-2132.
WU Z G, ZHAO C Y. Experimental investigations of porous materials in high temperature thermal energy storage systems [J]. Sol Energy, 2011, 85(7): 1371-1380.
TIAN H, DU L, WEI X, et al. Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage [J]. Appl Energy, 2017, 204(7): 525-530.
YU Y, TAO Y, HE Y L. Molecular dynamics simulation of thermophysical properties of NaCl-SiO2 based molten salt composite phase change materials [J]. Appl Therm Eng, 2019, 166(30): 114628.
YUAN F, LI M J, QIU Y, et al. Specific heat capacity improvement of molten salt for solar energy applications using charged single-walled carbon nanotubes [J]. Appl Energy, 2019, 250(4): 1481-1490.
FUMI F G, TOSI M P. Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—I [J]. J Phys Chem Solids, 1964, 25(1): 31-43.
BAUGHAN E C. The repulsion energies in ionic compounds [J]. Trans Faraday Soc, 1959, 55: 736-752.
de LEEUW N H, PARKER S C. Molecular-dynamics simulation of MgO surfaces in liquid water using a shell-model potential for water [J]. Phys Rev B, 1998, 58(20): 13901-13908.
FUENTES-AZCATL R, BARBOSA M C. Sodium chloride, NaCl: New force field [J]. J Phys Chem B, 2016, 120(9): 2460-2470.
ZHAO L, LIU L, SUN H. Semi-ionic model for metal oxides and their interfaces with organic molecules [J]. J Phys Chem C, 2007, 111(28): 10610-10617.
严六明, 朱素华. 分子动力学模拟的理论与实践 [M]. 北京:科学出版社, 2013.
GRUENHUT S, MACFARLANE D R. Molecular dynamics simulation of heavy metal fluoride glasses: Comparison of Buckingham and BHM potentials [J]. J Non Cryst Solids, 1995, 184: 356-362.
CYGAN R T, LIANG J J, KALINICHEV A G. Molecular models of hydroxide, oxyhydroxide, and clay Phases and the development of a general force field [J]. J Phys Chem B, 2004, 108(4): 1255-1266.
PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. J Comput Phys,1995, 117: 1-19.
NOS'E S. A unified formulation of the constant temperature molecular dynamics methods [J]. J Chem Phys, 1984, 81(1): 511-519.
HOOVER W G. Canonical dynamics: Equilibrium phase-space distributions [J]. Phys Rev A Gen Phys, 1985, 31(3): 1695-1697.
DARDEN T, YORK D, PEDERSEN L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems [J]. J Chem Phys, 1993, 98(12): 10089-10092.
YEH I C, BERKOWITZ M L. Ewald summation for systems with slab geometry [J]. J Chem Phys, 1999, 111(7): 3155-3162.
HOCKNEY R W, EASTWOOD J W. Computer simulation using particles [M]. London: CRC Press, 1988.
LIN C, ZHANG X, RAO Z. Theoretical prediction of thermal transport in BC2N monolayer [J]. Nano Energy, 2017, 38(6): 249-256.
YU Y, TAO Y, ZHAO C, et al. Thermal storage performance enhancement and regulation mechanism of KNO3 -SWCNT based composite phase change materials [J]. Int J Heat Mass Transf, 2021, 181: 121870.
MÜLLER-PLATHE F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity [J]. J Chem Phys, 1997, 106(14): 6082-6085.
PAN G, DING J, CHEN P, et al. Finite-size effects on thermal property predictions of molten salts [J]. Sol Energy Mater Sol Cells, 2020, 221: 110884.
毛亦尘,熊扬恒,岳亚楠. 非平衡分子动力学法模拟计算SiC材料的热导率 [J]. 济南大学学报(自然科学版), 2019, 33(1): 15-21.
曹炳阳. 一种模拟热导率的非平衡分子动力学方法 [J]. 计算物理, 2007, 24(4): 463-466.
GHERIBI A E, TORRES J A, CHARTRAND P. Recommended values for the thermal conductivity of molten salts between the melting and boiling points [J]. Sol Energy Mater Sol Cells, 2014, 126(3): 11-25.
SUN W F, XUAN W. Molecular dynamics simulation study of polyimide/copper-nanoparticle composites [J]. Acta Phys Sin(Chinese Edition), 2013, 62(18): 366-374.
周璐,马红,赵翊帆. 纳米流体中表面活性剂界面层传热特性的分子动力学模拟 [J]. 工程热物理学报, 2020, 41(11): 2834-2841.
JIN L, NORALDEEN S F M, ZHOU L, et al. Molecular study on the role of solid/liquid interface in specific heat capacity of thin nanofluid film with different configurations [J]. Fluid Phase Equilibria, 2021, 548(5): 113188.
LI L, WANG X, SUN W F, et al. Molecular dynamics simulation of polyethylene/silver-nanoparticle composites[J]. Acta Phys Sin, 2013,62(10): 106201.
王楠,陈俊,安青松,等. 纳米流体分散稳定性的分子动力学研究初探 [J]. 工程热物理学报, 2011, 32(7): 1107-1110.
JANZ G J. Molten salts data as reference standards for density, surface tension, viscosity, and electrical conductance: KNO3 and NaCl [J]. J Phys Chem Ref Data, 1980, 9(4): 791-830.
CUI W, SHEN Z, YANG J, et al. Molecular dynamics simulation on the microstructure of absorption layer at the liquid–solid interface in nanofluids [J]. Int Commun Heat Mass Transf, 2016, 71(12): 75-85.
王新,敬登伟. 颗粒表面吸附层对纳米流体导热系数贡献的分子动力学研究 [J]. 工程热物理学报, 2017, 38(7): 1459-1465.
LI Z, CUI L, LI B, et al. Mechanism exploration of the enhancement of thermal energy storage in molten salt nanofluid [J]. Phys Chem Chem Phys, 2021,23(23):13181-13189.
SHIN D, BANERJEE D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications [J]. Int J Heat Mass Transf, 2011, 54(5/6): 1064-1070.
袁帆,李明佳,马朝,等. 纳米材料复合熔盐比热容的预测方法研究 [J]. 工程热物理学报, 2020, 41(10): 2484-2490.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构