1.中山大学材料科学与工程学院,广东 广州 510006
2.广东省消防科学与智能应急技术重点实验室,广东 广州 510006
3.中山大学智能工程学院,广东 广州 510006
4.中国信息通信研究院,北京 100191
袁威(1997年生),男;研究方向:锂电池热失控;E-mail: yuanw25@mail2.sysu.edu.cn
褚燕燕(1979年生),女;研究方向:燃烧和火灾;E-mail: chuyy@mail.sysu.edu.cn
纸质出版日期:2022-11-25,
网络出版日期:2022-04-19,
收稿日期:2022-01-11,
录用日期:2022-03-10
扫 描 看 全 文
袁威,梁栋,褚燕燕等.过充电诱发电动车用锂电池热失控行为分析[J].中山大学学报(自然科学版),2022,61(06):136-143.
YUAN Wei,LIANG Dong,CHU Yanyan,et al.Analysis of thermal runaway behaviors of lithium batteries for electric bicycles induced by overcharging[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(06):136-143.
袁威,梁栋,褚燕燕等.过充电诱发电动车用锂电池热失控行为分析[J].中山大学学报(自然科学版),2022,61(06):136-143. DOI: 10.13471/j.cnki.acta.snus.2022B004.
YUAN Wei,LIANG Dong,CHU Yanyan,et al.Analysis of thermal runaway behaviors of lithium batteries for electric bicycles induced by overcharging[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(06):136-143. DOI: 10.13471/j.cnki.acta.snus.2022B004.
以电动车用锰酸锂电池(LiMn
2
O
4
)为研究对象,采用理论分析与试验相结合的方式,探究不同过充电倍率下锰酸锂电池的热失控行为特征。结果表明:高倍率过充条件下,电池更快达到热失控状态。3C倍率过充条件下,电池达到热失控的平均时间比1.5C倍率缩短233.4%。过充电倍率对电池的影响主要体现在缓慢温升和快速温升两个阶段,控制措施应当在这两个阶段介入。
Lithium manganate batteries (LiMn
2
O
4
) for electric bicycles were used as the research object. The thermal runaway behavior of LiMn
2
O
4
battery under different overcharge rates was investigated by combining theoretical analysis and experiments. The results showed that the battery reached thermal runaway faster under high overcharge rate, and the average time to reach thermal runaway under 3C overcharge rate was 233.4% shorter than that under 1.5C overcharge rate. The effect of overcharge multiplier on the battery was mainly reflected in the two stages of slow temperature rise and fast temperature rise, and the control measures should intervene in these two stages.
电动车锰酸锂电池热失控过充电
electric bicycleslithium manganate batterythermal runawayovercharge
司戈,王青松.锂离子电池火灾危险性及相关研究进展[J].消防科学与技术,2012,31(9):994-996.
亓延军.电动自行车起火原因与预防对策[J].消防科学与技术,2014,33(12):1472-1474.
FENG X, REN D, HE X, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770.
REN D, FENG X, LIU L, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Mater, 2021, 34: 563-573.
LOPEZ C F, JEEVARAJAN J A, MUKHERJEE P P. Characterization of lithium-ion battery thermal abuse behavior using experimental and computational analysis[J]. J Electrochem Soc , 2015, 162(10): A2163-A2173.
张培红,袁威,魏钟原,等.湿热环境下NCM三元锂离子电池热失控分析[J].东北大学学报(自然科学版),2020,41(6):881-887.
GUO L S, WANG Z R, WANG J H, et al. Effects of the environmental temperature and heat dissipation condition on the thermal runaway of lithium-ion batteries during the charge-discharge process[J]. J Loss Prev Process Ind, 2017, 49: 953-960.
GOLUBKOV A W, SCHEIKL S, PLANTEU R, et al. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes-impact of state of charge and overcharge[J]. RSC Adv, 2015, 5(70): 57171-57186.
YOKOSHIMA T, MUKOYAMA D, MAEDA F, et al. Direct observation of internal state of thermal runaway in lithium ion battery during nail-penetration test[J]. J Power Sources, 2018, 393: 67-74.
FENG X, OUYANG M, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Mater, 2018, 10: 246-267.
李磊,李钊,姬丹,等.过充电触发的LFP和NCM锂离子电池的热失控行为:差异与原因[J/OL].储能科学与技术,2022, 11(5): 1419-1427.
REN D, FENG X, LU L, et al. Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions[J]. Appl Energy, 2019, 250: 323-332.
庞静, 卢世刚, 刘莎. 锂离子电池过充特性的研究[J]. 电化学, 2005,11(4): 398-401.
WANG Z, YUAN J, ZHU X, et al. Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: A comparison study[J]. J Energy Chem, 2021, 55: 484-498.
OUYANG M , REN D , LU L , et al. Overcharge-induced capacity fading analysis for large format lithium-ion batteries with LiyNi1/3Co1/3Mn1/3 O2 +LiyMn 2O4 composite cathod[J]. J Power Sources, 2015, 279:626-635.
MAO N, WANG Z R, CHUNG Y H, et al. Overcharge cycling effect on the thermal behavior, structure, and material of lithium-ion batteries[J]. Appl Therm Eng, 2019, 163: 114147.
苗冬梅, 程新群, 孙长亮,等. 过充对电动自行车用锂离子电池安全性能的影响[J]. 电池, 2009, 39(2): 77-79.
张万民,韩建平,原小永.电动车火灾成因分析及预防对策[J].消防科学与技术,2011,30(9):870-872.
FERNANDES Y, BRY A, de PERSIS S. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery[J]. J Power Sources, 2018, 389: 106-119.
HUANG L, ZHANG Z, WANG Z, et al. Thermal runaway behavior during overcharge for large-format Lithium-ion batteries with different packaging patterns[J]. J Energy Storage, 2019, 25: 100811.
ZHAO R, GU J, LIU J. An investigation on the significance of reversible heat to the thermal behavior of lithium ion battery through simulations[J]. J Power Sources, 2014, 266: 422-432.
DU S, LAI Y, AI L, et al. An investigation of irreversible heat generation in lithium ion batteries based on a thermo-electrochemical coupling method[J]. Appl Therm Eng, 2017, 121: 501-510.
REN D, FENG X, LU L, et al. An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery[J]. J Power Sources, 2017, 364: 328-340.
0
浏览量
1
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构