Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong, China
CHANG Huailiang (mahlchang@ust.hk)
LI Weiping (mawpli@ust.hk)
纸质出版日期:2023-03-25,
收稿日期:2022-10-29,
录用日期:2022-11-16
扫 描 看 全 文
A road map to higher genus Gromov-Witten invariants of Calabi-Yau quintics[J]. 中山大学学报(自然科学版)(中英文), 2023,62(2):1-9.
CHANG Huailiang,LI Weiping.A road map to higher genus Gromov-Witten invariants of Calabi-Yau quintics[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(02):1-9.
A road map to higher genus Gromov-Witten invariants of Calabi-Yau quintics[J]. 中山大学学报(自然科学版)(中英文), 2023,62(2):1-9. DOI: 10.13471/j.cnki.acta.snus.2022A093.
CHANG Huailiang,LI Weiping.A road map to higher genus Gromov-Witten invariants of Calabi-Yau quintics[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(02):1-9. DOI: 10.13471/j.cnki.acta.snus.2022A093.
This is a survey of using NMSP method to study higher genus Gromov-Witten invariants of Calabi-Yau quintics. It emphasizes on how and why the various methods are introduced to solve several important conjectures for higher genus Gromov-Witten invariants of Calabi-Yau quintics.
Gromov-Witten invariantsCalabi-Yau manifolds
ABRAMOVICH D, JARVIS T J, 2003. Moduli of twisted spin curves[J]. Proc Amer Math Soc, 131(3): 685-699.
BEHREND K, 1997. Gromov-Witten invariants in algebraic geometry[J]. Invent Math, 127(3): 601-617.
BEHREND K, FANTECHI B, 1997. The intrinsic normal cone[J]. Invent Math, 128(1): 45-88.
BERSHADSKY M, CECOTTI S, OOGURI H, et al, 1993. Holomorphic anomalies in topological field theories[J]. Nucl Phys B, 405(2/3): 279-304.
BERTRAM A, 2000. Another way to enumerate rational curves with torus actions[J]. Invent Math, 142(3): 487-512.
CANDELAS P , de la OSSA X ,GREEN P S, et al, 1991. A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory[J]. Nucl Phys B, 359(1): 21-74.
CHANG H L, GUO S, LI J, 2018. BCOV's Feynman rule of quintic 3-folds[EB/OL]. arXiv: 1810.00394, (2019-03-05) [2022-09-05]. https://arxiv.org/abs/1810.00394https://arxiv.org/abs/1810.00394.
CHANG H L, GUO S, LI J, 2021a. Polynomial structure of Gromov-Witten potential of quintic <math id="M226"><mn mathvariant="normal">3</mn></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49429259&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49429256&type=1.608666662.28600001-folds[J]. Ann Math, 194(3): 585-645.
CHANG H L, GUO S, LI J,et al, 2021b. The theory of NMSP fields[J]. Geom Topol, 25(2): 775-811.
CHANG H L, GUO S, LI W P, et al, 2020. Genus one GW invariants of quintic threefolds via MSP localization[J]. Int Math Res Not, (19): 6421-6462.
CHANG H L, LI J, 2012. Gromov-Witten invariants of stable maps with fields[J]. Int Math Res Not, (18): 4163-4217.
CHANG H L, LI J, 2020. A vanishing associated with irregular MSP fields[J]. Int Math Res Not, (20): 7347-7396.
CHANG H L, LI J, LI W P, 2015. Witten’s top Chern class via cosection localization[J]. Invent Math, 200(3): 1015-1063.
CHANG H L, LI J, LI W P, et al, 2019. Mixed-spin-P fields of Fermat quintic polynomials[J]. Camb J Math, 7(3): 319-364.
CHANG H L, LI J, LI W P, et al, 2022. An effective theory of GW and FJRW invariants of quintics Calabi-Yau manifolds[J]. J Differential Geom, 120(2): 251-306.
CHEN Q, JANDA F, RUAN Y, 2021. The logarithmic gauged linear sigma model[J]. Invent Math, 225(3): 1077-1154.
FAN H J, JARVIS T J, RUAN Y B, 2013. The Witten equation, mirror symmetry, and quantum singularity theory[J]. Ann Math,178(1): 1-106.
FULTON W, 1984. Intersection theory[M]. Berlin: Springer-Verlag.
GIVENTAL A, 1996. Equivariant Gromov-Witten invariants[J]. Int Math Res Not, (13): 613-663.
GIVENTAL A, 1999. The mirror formula for quintic threefolds[M]// ELIASHBERG Y, et al, ed. Northern california symplectic geometry seminar. Providence RI: American Mathematical Society: 49-62.
GRABER T, PANDHARIPANDE R, 1999. Localization of virtual classes[J]. Invent Math, 135(2): 487-518.
GUFFIN J, SHARPE E, 2009. A-twisted Landau-Ginzburg models[J]. J Geom Phys, 59(12): 1547-1580.
GUO S, JANDA F, RUAN Y, 2018. Structure of higher genus Gromov-Witten invariants of quintic 3-folds[EB/OL]. arXiv:1812.11908,(2018-12-31) [2022-09-05]. https://arxiv.org/abs/1812.11908https://arxiv.org/abs/1812.11908.
GUO S, ROSS D, 2019. The genus-one global mirror theorem for the quintic 3-fold[J]. Compos Math, 155(5): 995-1024.
HUANG M X, KLEMM A, QUACKENBUSH S, 2009. Topological string theory on compact Calabi-Yau: Modularity and boundary conditions[M]// SCHLESINGER K G, et al,ed. Homological mirror symmetry, Lecture Notes in Physics, Vol 757. Berlin: Springer: 45-102.
KATZ S, 1983. Degenerations of quintic threefolds and their lines[J]. Duke Math J, 50(4): 1127-1135.
KATZ S, 1986. On the finiteness of rational curves on quintic threefolds[J]. Compos Math, 60(2): 151-162.
KIEM Y H, LI J, 2013. Localized virtual cycle by cosections[J]. J Amer Math Soc, 26(4): 1025-1050.
KONTSEVICH M, 1995. Enumeration of rational curves via torus actions[M]// DIJKGRAAF R,et al,ed. The moduli space of curves,Progress in Mathematics 129. Boston: Birkhäuser: 335-368.
KONTSEVICH M, MANIN Y, 1994. Gromov-Witten classes, quantum cohomology, and enumerative geometry[J]. Comm Math Phys, 164(3): 525-562.
KONTSEVICH M, MANIN Y, 1996. Quantum cohomology of a product (with Appendix by R. Kaufmann)[J]. Invent Math, 124(1): 313-339.
LHO H, PANDHARIPANDE R, 2018. Stable quotients and the holomorphic anomaly equation[J]. Adv Math, 332: 349-402.
LI J, TIAN G, 1998. Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties[J]. J Amer Math Soc, 11(1): 119-174.
LI J, ZINGER A, 2009. On the Genus-One Gromov-Witten Invariants of Complete Intersections[J]. J Differential Geom, 82(3): 641-690.
LIAN B H, LIU K F, YAU S T, 1999. Mirror principle I[M]// YAU S T, ed. Surveys in differential geometry: Differential geometry inspired by string theory, Vol V. Boston: International Press: 405-454.
POLISHCHUK A, VAINTROB A, 2001. Algebraic construction of Witten’s top Chern class[M]// PREVIATO E,ed. Advances in algebraic geometry motivated by physics, Contemporary Mathematics 276. Providence RI: American Mathematical Society: 229-249.
RUAN Y, TIAN G, 1995. A mathematical theory of quantum cohomology[J]. J Differential Geom, 42(2): 259-367.
VAKIL R, ZINGER A, 2008. A desingularization of the main component of the moduli space of Genus-One stable maps into <math id="M227"><msup><mrow><mi mathvariant="double-struck">P</mi></mrow><mrow><mi mathvariant="normal">n</mi></mrow></msup></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49429274&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49429273&type=2.963333372.45533323[J]. Geom Topol, 12(1): 1-95.
WITTEN E, 1993. Phases of <math id="M228"><mi>N</mi><mo>=</mo><mn mathvariant="normal">2</mn></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49429277&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49429262&type=7.619999892.28600001 theories in two dimensions[J]. Nucl Phys B, 403(1/2): 159-222.
YAMAGUCHI S, YAU S T, 2004. Topological string partition functions as polynomials[J]. J High Energy Phys, 8(7): 1137-1156.
ZINGER A, 2008. The reduced genus 1 Gromov-Witten invariants of Calabi-Yau hypersurfaces[J]. J Amer Math Soc, 22(3): 691-737.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构