湖南理工学院数学学院, 湖南 岳阳 414006
方黄(1996年生),女;研究方向:小波分析及其应用;E-mail:huangfang7@foxmail.com
李松华(1973年生),男;研究方向:小波分析及其应用;E-mail:songhuali@hnist.edu.cn
纸质出版日期:2024-01-25,
网络出版日期:2023-11-15,
收稿日期:2022-10-14,
录用日期:2023-02-26
扫 描 看 全 文
方黄,李松华,彭宏杰.Laplace方程上半平面边值问题中的动态采样[J].中山大学学报(自然科学版)(中英文),2024,63(01):166-172.
FANG Huang,LI Songhua,PENG Hongjie.Dynamical sampling in the boundary value problem of Laplace equation in upper half-plane[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(01):166-172.
方黄,李松华,彭宏杰.Laplace方程上半平面边值问题中的动态采样[J].中山大学学报(自然科学版)(中英文),2024,63(01):166-172. DOI: 10.13471/j.cnki.acta.snus.2022A089.
FANG Huang,LI Songhua,PENG Hongjie.Dynamical sampling in the boundary value problem of Laplace equation in upper half-plane[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(01):166-172. DOI: 10.13471/j.cnki.acta.snus.2022A089.
针对Laplace方程上半平面边值问题,我们研究了利用
<math id="M1"><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>y</mi></mrow></msub><mi mathvariant="normal">*</mi><mi>f</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53224936&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53224932&type=
6.01133299
3.89466691
的采样来恢复边值
<math id="M2"><mi>f</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53224943&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53224940&type=
2.03200006
2.96333337
. 为了获得采样重构稳定性结果,Shannon采样定理表明采样率必需满足一定条件.在频带有限函数空间中针对采样率不足的情况,通过分析样本扩散矩阵的最小特征值,并利用Remez-Turan不等式避开盲点方法,解决了采样不等式稳定性问题.
For the boundary value problem of Laplace equation in upper half plane, the sampling of
<math id="M3"><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>y</mi></mrow></msub><mi mathvariant="normal">*</mi><mi>f</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53224952&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53224947&type=
7.02733374
4.57200003
to recover the boundary value
<math id="M4"><mi>f</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53224964&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53224959&type=
2.28600001
3.47133350
is studied. In order to obtain the stability reconstruction of sampling, Shannon sampling theorem shows that the sampling rate must satisfy certain conditions. The stability of sampling inequality is solved by analyzing the minimum eigenvalue of the sample diffusion matrix and using the Remez-Turan inequality to avoid the blind spot in the case of insufficient sampling rate in the bandlimited function space.
动态采样频带有限函数Remez-Turan不等式Laplace方程
dynamic samplingbandlimited functionRemez-Turan inequalityLaplace equation
ALDROUBI A, GRÖCHENIG K, 2001. Nonuniform sampling and reconstruction in shift-invariant spaces[J]. SIAM Rev, 43(4): 585–620.
ALDROUBI A, DAVIS J, KRISHTAL I, 2013. Dynamical sampling: Time-space trade-off[J]. Appl Comput Harmon Anal, 34(3): 495-503.
ALDROUBI A, DAVIS J, KRISHTAL I, 2015. Exact reconstruction of signals in evolutionary systems via spatiotemporal trade-off[J]. J Fourier Anal Appl, 21(1): 11-31.
ALDROUBI A, CABRELLI C, MOLTER U, et al, 2017. Dynamical sampling[J]. Appl Comput Harmon Anal, 42(3): 378-401.
ALDROUBI A, HUANG L X, PETROSYAN A, 2019. Frames induced by the action of continuous powers of an operator[J]. J Math Anal Appl, 478(2): 1059-1084.
ALDROUBI A, GRÖCHENIG K, HUANG L, et al, 2021. Sampling the flow of a bandlimited function[J]. J Geom Anal, 31(9): 9241-9275.
CHEN W, HAN B, JIA R Q, 2005. Estimate of aliasing error for non-smooth signals prefiltered by quasi-projections into shift-invariant spaces[J]. IEEE Trans Signal Process, 53(5): 1927-1933.
LIU B, SUN W, 2007. Determining averaging functions in average sampling[J]. IEEE Signal Process Lett, 14(4): 244-246.
LIU Y, 1996. Irregular sampling for spline wavelet subspaces[J]. IEEE Trans Inf Theory, 42(2): 623-627.
LU Y M, VETTERLI M, 2009. Spatial super-resolution of a diffusion field by temporal oversampling in sensor networks[C]//2009 IEEE International Conference on Acoustics, Speech and Signal Processing:2249-2252.
NASHED M Z, SUN Q, 2010. Sampling and reconstruction of signals in a reproducing kernel subspace of Lp(Rd)[J]. J Funct Anal, 258(7): 2422-2452.
NAZAROV F, 1993. Local estimates of exponential polynomials and their applications to inequalities of uncertainty principle type[J]. Algebra I Analiz, 5(5): 3-66.
PAPOULIS A, 1977. Generalized sampling expansion[J]. IEEE Trans Circuits Syst, 24(11): 652-654.
SUN Q, 2007. Nonuniform average sampling and reconstruction of signals with finite rate of innovation[J]. SIAM J Math Anal, 38(5): 1389-1422.
SUN W, ZHOU X, 2000. Sampling theorem for wavelet subspaces: Error estimate and irregular sampling[J]. IEEE Trans Signal Process, 48(1): 223-226.
XIAN J, LI S H, 2014. Sampling and reconstruction for shift-invariant stochastic processes[J]. Stochastics, 86(1): 125-134.
YU Y S, GU D H, 1997. A note on a lower bound for the smallest singular value[J]. Linear Algebra Appl, 253(1/2/3): 25-38.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构