中国科学技术大学管理学院,安徽 合肥 230026
ZHU Xuezhi(xyz19z@mail.ustc.edu.cn)
ZHANG Hong(zhangh@ustc.edu.cn)
纸质出版日期:2023-11-25,
网络出版日期:2023-09-26,
收稿日期:2022-09-28,
录用日期:2023-04-14
扫 描 看 全 文
朱学智,张洪.基于孟德尔随机化方法的纵向中介分析[J].中山大学学报(自然科学版),2023,62(06):159-170.
ZHU Xuezhi,ZHANG Hong.Longitudinal mediation analysis based on Mendelian randomization[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(06):159-170.
朱学智,张洪.基于孟德尔随机化方法的纵向中介分析[J].中山大学学报(自然科学版),2023,62(06):159-170. DOI: 10.13471/j.cnki.acta.snus.2022A085.
ZHU Xuezhi,ZHANG Hong.Longitudinal mediation analysis based on Mendelian randomization[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(06):159-170. DOI: 10.13471/j.cnki.acta.snus.2022A085.
工具变量法广泛应用于中介分析,能够有效避免传统因果推断方法面临的难题,即由于未观测到的混淆因素和逆向因果造成的对因果效应的估计偏差. 现有的工具变量方法大多服务于横断面研究,但纵向数据相较于截面数据能更好地反映因果路径。现有的文献中没有针对纵向中介分析的工具变量方法. 为此本文开发了一种新的工具变量法用来估计纵向中介效应,同时建立了新方法的大样本性质,包括相合性和渐近正态性. 另外,一系列模拟研究的结果展示了新方法的有限样本性质.
Instrumental variables(IVs) are widely used in mediation analysis to effectively reduce causal effect bias due to unobserved confounding factors and reverse causal direction that cannot be handled with conventional causal inference methods. Most IV methods in the literature are designed for cross-sectional studies. Longitudinal data can better reflect causal paths than cross-sectional data
which provides observations of individual patterns of changes and measurements of event duration. To our knowledge
there is no IV method specifically tailored for longitudinal mediation analysis in the literature. A new IV method is proposed to estimate longitudinal mediation effects. Large sample properties
including consistency and asymptotic normality
are established for the new IV method. Simulation studies are provided to demonstrate the desired finite sample properties of the new method.
因果推断孟德尔随机化中介分析纵向数据
causal inferenceMendelian randomizationmediation analysislongitudinal data
BURGESS S, DANIEL R M, BUTTERWORTH A S, et al, 2015. Network Mendelian randomization: Using genetic variants as instrumental variables to investigate mediation in causal pathways[J]. Int J Epidemiol, 44(2): 484-495.
BURGESS S, THOMPSON S G, 2015. Multivariable Mendelian randomization: The use of pleiotropic genetic variants to estimate causal effects[J]. Am J Epidemiol, 181(4): 251-260.
CARD D, KRUEGER A B, 1996. School resources and student outcomes: An overview of the literature and new evidence from north and south Carolina[J]. J Econ Perspect, 10(4): 31-50.
CHEONG J, MACKINNON D P, KHOO S T, 2003. Investigation of mediational processes using parallel process latent growth curve modeling[J]. Struct Equ Modeling, 10(2): 238.
CIPOLLONE P, ROSOLIA A, 2007. Social interactions in high school: Lessons from an earthquake[J]. Am Econ Rev, 97(3): 948-965.
DUMITRESCU L, BROWN-GENTRY K, GOODLOE R, et al, 2011. Evidence for age as a modifier of genetic associations for lipid levels[J]. Ann Hum Genet, 75(5): 589-597.
GROVER S, del GRECO M F, STEIN C M, et al, 2017. Mendelian randomization[M]//ELSTON R C, ed. Statistical Human Genetics. New York: Humana Press: 581-628.
HALL R E, JONES C I, 1999. Why do some countries produce so much more output per worker than others?[J]. Q J Econ, 114(1): 83-116.
HARDIN J W, CARROLL R J, 2003. Variance estimation for the instrumental variables approach to measurement error in generalized linear models[J]. The Stata Journal: Promoting Communications on Statistics and Stata, 3(4): 342-350.
HERNÁN M A, ROBINS J M, 2006. Instruments for causal inference: An epidemiologist’s dream?[J]. Epidemiology, 17(4): 360-372.
IACOBUCCI D, 2008. Mediation analysis[M]. Los Angeles: Sage.
IMAI K, KEELE L, YAMAMOTO T, 2010. Identification, inference and sensitivity analysis for causal mediation effects[J]. Statist Sci, 25(1): 51-71.
KRAUSE M S, HOWARD K I, 2003. What random assignment does and does not do[J]. J Clin Psychol, 59(7): 751-766.
LABRECQUE J A, SWANSON S A, 2019. Interpretation and potential biases of Mendelian randomization estimates with time-varying exposures[J]. Am J Epidemiol, 188(1): 231-238.
LABRECQUE J A, SWANSON S A, 2020. Commentary: Mendelian randomization with multiple exposures: The importance of thinking about time[J]. Int J Epidemiol, 49(4): 1158-1162.
LAWLOR D A, HARBORD R M, STERNE J A C, et al, 2008. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology[J]. Stat Med, 27(8): 1133-1163.
MEHTA P D, 2001. Control variable in research[M]//SMELSER N J, ed. International Encyclopedia of the Social & Behavioral Sciences. Amsterdam: Elsevier: 2727-2730.
NEU S C, PA J, KUKULL W, et al, 2017. Apolipoprotein E genotype and sex risk factors for Alzheimer disease: A meta-analysis[J]. JAMA Neurol, 74(10): 1178-1189.
PEARL J, 2001. Direct and indirect effects[C]//Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence: 411-420.
RELTON C L, SMITH G D, 2012. Two-step epigenetic Mendelian randomization: A strategy for establishing the causal role of epigenetic processes in pathways to disease[J]. Int J Epidemiol, 41(1): 161-176.
ROBINS J M, GREENLAND S, 1992. Identifiability and exchangeability for direct and indirect effects[J]. Epidemiology, 3(2): 143-155.
RUBIN D B, 1974. Estimating causal effects of treatments in randomized and nonrandomized studies[J]. J Educ Psychol, 66(5): 688-701.
SANDERSON E, SMITH G D, WINDMEIJER F, et al, 2019. An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings[J]. Int J Epidemiol, 48(3): 713-727.
SANDERSON E, 2021. Multivariable Mendelian randomization and mediation[J]. Cold Spring Harb Perspect Med, 11(2): a038984.
SHIRTS B H, HASSTEDT S J, HOPKINS P N, et al, 2011. Evaluation of the gene-age interactions in HDL cholesterol, LDL cholesterol, and triglyceride levels: The impact of the SORT1 polymorphism on LDL cholesterol levels is age dependent[J]. Atherosclerosis, 217(1): 139-141.
SMITH G D, EBRAHIM S, 2003. 'Mendelian randomization': Can genetic epidemiology contribute to understanding environmental determinants of disease?[J]. Int J Epidemiol, 32(1): 1-22.
SMITH G D, EBRAHIM S, 2004. Mendelian randomization: Prospects, potentials, and limitations[J]. Int J Epidemiol, 33(1): 30-42.
von SOEST T, HAGTVET K A, 2011. Mediation analysis in a latent growth curve modeling framework[J]. Struct Equ Modeling, 18(2): 289-314.
SPLAWA-NEYMAN J, DABROWSKA D M, SPEED T P, 1990. On the application of probability theory to agricultural experiments. Essay on principles. Section 9[J]. Statist Sci, 5(4): 465-472.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构