贵州大学数学与统计学院, 贵州 贵阳 550025
吴莎(1998年生),女;研究方向:微分方程定性理论及应用;E-mail:zhangwusha44@163.com
吴奎霖(1981年生),男;研究方向:微分方程定性理论及应用;E-mail:sci.klwu@gzu.edu.cn
纸质出版日期:2023-11-25,
网络出版日期:2023-07-27,
收稿日期:2022-09-27,
录用日期:2023-02-26
扫 描 看 全 文
吴莎,吴奎霖.亏格不为1的二次可逆LV系统的极限环分支[J].中山大学学报(自然科学版),2023,62(06):127-134.
WU Sha,WU Kuilin.Bifurcation of limit cycles for quadratic reversible Lotka-Volterra systems with non-genus one[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(06):127-134.
吴莎,吴奎霖.亏格不为1的二次可逆LV系统的极限环分支[J].中山大学学报(自然科学版),2023,62(06):127-134. DOI: 10.13471/j.cnki.acta.snus.2022A083.
WU Sha,WU Kuilin.Bifurcation of limit cycles for quadratic reversible Lotka-Volterra systems with non-genus one[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(06):127-134. DOI: 10.13471/j.cnki.acta.snus.2022A083.
主要研究两个亏格不为1的二次可逆Lotka-Volterra系统的周期环域在小扰动下产生极限环的个数问题. 应用完全切比雪夫系统的性质来判定该系统的二阶Melnikov函数的零点个数,从而证明了在二次扰动下,这两个系统的周期环域能分支出两个极限环.
The number of limit cycles bifurcated from the periodic annulus of two quadratic reversible Lotka-Volterra systems with non-genus 1 under small bifurcations is studied. Using the properties of complete Chebyshev systems to estimate the number of zeros of second-order Melnikov function, it is proven that the number of limit cycles bifurcated from the periodic annulus of the two quadratic reversible Lotka-Volterra systems are both 2 under quadratic perturbations.
可逆LV系统Abel积分极限环亏格1
reversible Lotka-Volterra systemAbelian integrallimit cyclesgenus one
BORWEIN P B, ERDÉLYI T, 1995. Polynomials and polynomial inequalities[M]. New York: Springer Verlag.
GAUTIER S, GAVRILOV L, ILIEV I D, 2009. Perturbations of quadratic centers of genus one[J]. Discrete Contin Dyn Syst, 25(2): 511-535.
GAVRILOV L, ILIEV I D, 2000. Second-order analysis in polynomially perturbed reversible quadratic Hamiltonian systems[J]. Ergod Th Dynam Sys, 20(6): 1671-1686.
GAVRILOV L, ILIEV I D, 2009. Quadratic perturbations of quadratic codimension-four centers[J]. J Math Anal Appl, 357(1): 69-76.
GRAU M, MAÑOSAS F, VILLADELPRAT J, 2011. A Chebyshev criterion for abelian integrals[J]. Trans Amer Math Soc, 363(1): 109-129.
HOROZOV E, ILIEV I D, 1994. On the number of limit cycles in perturbations of quadratic Hamiltonian systems[J]. Proc Lond Math Soc, 69(1): 198-224.
ILIEV I D, 1996. The cyclicity of the period annulus of the quadratic Hamiltonian triangle[J]. J Differ Equ, 128(1): 309-326.
ILIEV I D, 1997. Inhomogeneous Fuchs equations and the limit cycles in a class of near-integrable quadratic systems[J]. Proc Roy Soc Edinburgh Sect A, 127(6): 1207-1217.
ILIEV I D, 1998. Perturbations of quadratic centers[J]. Bull Sci Math, 122(2): 107-161.
LI C, LLIBRE J, 2009. The cyclicity of period annulus of a quadratic reversible Lotka-Volterra system[J]. Nonlinearity, 22(12): 2971-2979.
LI C Z, ZHANG Z, 2002. Remarks on 16th weak Hilbert problem for <math id="M254"><mi>n</mi><mo>=</mo><mn mathvariant="normal">2</mn></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51094556&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51094554&type=7.111999992.28600001[J]. Nonlinearity, 15(6): 1975-1992.
LIU C J, 2012. The cyclicity of period annuli of a class of quadratic reversible systems with two centers[J]. J Differ Equ, 252(10): 5260-5273.
PENG L P, FENG Z S, LIU C J, 2014. Quadratic perturbations of a quadratic reversible Lotka-Volterra systems with two centers[J]. Discrete Contin Dyn Syst, 34(11): 4807-4826.
SHAO Y, CHUNXIANG A, 2013. Quadratic perturbations of a class of quadratic reversible Lotka-Volterra systems[J]. Int J Bifur Chaos, 23(8): 1350137.
SHAO Y, ZHAO Y L, 2011. The cyclicity and period function of a class of quadratic reversible Lotka-Volterra system of genus one[J]. J Math Anal Appl, 377(2): 817-827.
WU K L, LIANG H H, 2014. Limit cycles bifurcating from a quadratic reversible Lotka-Volterra system with a center and three saddles[J]. Chin Ann Math Ser B, 35: 25-32.
ZHAO Y L, 2011. On the number of limit cycles in quadratic perturbations of quadratic codimension-four centres[J]. Nonlinearity, 24(9): 2505-2522.
ZOLADEK H, 1994. Quadratic systems with center and their perturbations[J]. J Differ Equ, 109(2): 223-273.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构