韩山师范学院数学与统计学院, 广东 潮州521041
郑伟珊(1983年生),女;研究方向:数值计算;E-mail:weishanzheng@hstc.edu.cn
纸质出版日期:2023-11-25,
网络出版日期:2023-09-26,
收稿日期:2022-09-06,
录用日期:2022-12-16
扫 描 看 全 文
郑伟珊.一类时滞分数阶Volterra微积分方程组的严格误差分析[J].中山大学学报(自然科学版),2023,62(06):152-158.
ZHENG Weishan.Sharp error estimate for fractional Volterra integro-differential equations with delay[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(06):152-158.
郑伟珊.一类时滞分数阶Volterra微积分方程组的严格误差分析[J].中山大学学报(自然科学版),2023,62(06):152-158. DOI: 10.13471/j.cnki.acta.snus.2022A077.
ZHENG Weishan.Sharp error estimate for fractional Volterra integro-differential equations with delay[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(06):152-158. DOI: 10.13471/j.cnki.acta.snus.2022A077.
采用谱配置方法分析带一般时滞项的分数阶Volterra微积分方程. 通过严格的误差分析证明了近似解的误差和近似分数阶导数的误差在
<math id="M1"><msup><mrow><mi>L</mi></mrow><mrow><mi mathvariant="normal">∞</mi></mrow></msup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51094836&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51094860&type=
3.04800010
2.53999996
和
<math id="M2"><msubsup><mrow><mi>L</mi></mrow><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mo>-</mo><mi>μ</mi><mo>
</mo><mo>-</mo><mi>μ</mi></mrow></msup></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51094862&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51094838&type=
6.51933336
3.47133350
模意义下呈指数衰减. 最后用数值例子来验证理论分析的正确性.
Spectral methods are developed for solving fractional differential equations with vanishing delay numerically. Sharp error estimates are carried out, which indicates that the error of solution and the error of exact fractional derivative decay exponentially in both
<math id="M3"><msup><mrow><mi>L</mi></mrow><mrow><mi mathvariant="normal">∞</mi></mrow></msup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51094867&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51094865&type=
3.04800010
2.53999996
and
<math id="M4"><msubsup><mrow><mi>L</mi></mrow><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mo>-</mo><mi>μ</mi><mo>
</mo><mo>-</mo><mi>μ</mi></mrow></msup></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51094872&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51094869&type=
6.01133299
3.47133350
. In the end, a numerical example is presented to confirm our theoretical findings.
分数阶Volterra微积分方程Jacobi配置法时滞误差估计
fractional Volterra integro-differential equationJacobi collocation methoddelaysharp error estimate
CAI H, CHEN Y, 2018. A fractional order collocation method for second kind Volterra integral equations with weakly singular kernels[J]. J Sci Comput, 75(2): 970-992.
CANUTO C, HUSSAINI M Y, QUARTERONI A, et al, 2006. Spectral methods: Fundamentals in single domains[M]. Berlin: Springer.
CHEN Y, TANG T, 2009. Spectral methods for weakly singular Volterra integral equations with smooth solutions[J]. J Comput Appl Math, 233(4): 938-950.
CHEN Y, TANG T, 2010. Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel [J]. Math Comput, 79: 147-167.
COLTON D, KRESS R, 1998. Inverse acoustic and electromagnetic scattering theory[M]. Berlin: Springer.
GU Z, 2016. Multi-step Chebyshev spectral collocation method for Volterra integro-differential equations[J]. Calcolo, 53(4): 559-583.
GU Z, 2020. Chebyshev spectral collocation method for system of nonlinear Volterra integral equations[J].Numer Algorithms, 83(1): 243-263.
KHAN S A, SHAH K, ZAMAN G, et al, 2019. Existence theory and numerical solutions to smoking model under Caputo-Fabrizio fractional derivative[J]. Chaos, 29(1): 013128.
MASTROIANNI G, OCCORSIO D, 2001. Optimal systems of nodes for Lagrange interpolation on bounded intervals: A survey[J]. J Comput Appl Math, 134(1/2): 325-341.
NEVAI P, 1984. Mean convergence of Lagrange interpolation. III[J]. Trans Amer Math Soc, 282(2): 669-698.
RAGOZIN D L, 1970. Polynomial approximation on compact manifolds and homogeneous spaces[J]. Trans Amer Math Soc, 150(1): 41-53.
RAGOZIN D L, 1971. Constructive polynomial approximation on spheres and projective spaces[J]. Trans Amer Math Soc, 162: 157-170.
SHAH K, JARAD F, ABDELJAWAD T, 2020. On a nonlinear fractional order model of dengue fever disease under Caputo-Fabrizio derivative[J]. Alex Eng J, 59(4): 2305-2313.
TANG T, XU X, CHENG J, 2008. On spectral methods for Volterra integral equations and the convergence analysis[J]. J Comput Math, 26(6): 825-837.
TOHIDI E, NAVID SAMADI O R, SHATEYI S, 2014. Convergence analysis of Legendre pseudospectral scheme for solving nonlinear systems of Volterra integral equations[J]. Adv Math Phys, 2014: 1-12.
WEI Y, CHEN Y, 2012. Convergence analysis of the spectral methods for weakly singular Volterra integro-differential equations with smooth solutions[J]. Adv Appl Math Mech, 4(1): 1-20.
YANG Y, CHEN Y, HUANG Y, 2014. Convergence analysis of the Jacobi spectral-collocation method for fractional integro-differential equations[J]. Acta Math Sci, 34(3): 673-690.
ZENG F, LIU F, LI C, et al, 2014. A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation[J]. SIAM J Numer Anal, 52(6): 2599-2622.
ZHANG R, ZHU B, XIE H, 2013. Spectral methods for weakly singular Volterra integral equations with pantograph delays[J]. Front Math China, 8(2): 281-299.
ZHENG W S, 2021. Jacobi convergence analysis for delay Volterra integral equation with weak singularity[J]. Math Numer Sin, 43(2): 253-260.
0
浏览量
14
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构