1.广东工业大学经济学院, 广东 广州 510520
2.广东工业大学管理学院, 广东 广州 510520
朱怀念(1985年生),男;研究方向:动态博弈理论及应用、保险精算;E-mail:zhuhuainian@gdut.edu.cn
宾宁(1980年生),女;研究方向:动态博弈理论及应用、保险精算;E-mail:bbb8087@gdut.edu.cn
纸质出版日期:2024-07-25,
网络出版日期:2024-06-04,
收稿日期:2022-08-30,
录用日期:2023-11-30
移动端阅览
朱怀念,陈卓扬,宾宁.Heston模型下的两人鲁棒非零和随机微分投资组合博弈[J].中山大学学报(自然科学版)(中英文),2024,63(04):158-169.
ZHU Huainian,CHEN Zhuoyang,BIN Ning.Robust non-zero-sum stochastic differential portfolio games with two interacting agents under the Heston model[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(04):158-169.
朱怀念,陈卓扬,宾宁.Heston模型下的两人鲁棒非零和随机微分投资组合博弈[J].中山大学学报(自然科学版)(中英文),2024,63(04):158-169. DOI: 10.13471/j.cnki.acta.snus.2022A062.
ZHU Huainian,CHEN Zhuoyang,BIN Ning.Robust non-zero-sum stochastic differential portfolio games with two interacting agents under the Heston model[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2024,63(04):158-169. DOI: 10.13471/j.cnki.acta.snus.2022A062.
用Heston模型描述风险资产的价格动态,构建了包含一种无风险资产和一种风险资产的金融市场,投资者可以将其财富自由地配置于无风险资产和风险资产中. 考虑到投资者之间经济行为的随机博弈,用相对业绩刻画投资者之间的博弈行为,同时考虑模型的不确定性,以最大化最坏情境下投资者相对业绩的期望效用为目标,构建了包含两个投资者的鲁棒非零和随机微分投资组合博弈模型,利用动态规划方法分别求得了CRRA效用下Nash均衡策略的解析表达,借助数值仿真算例进行了参数的敏感性分析并给出了相应的经济意义阐释. 研究发现:相较于不涉及市场竞争的传统投资策略,竞争将使投资者产生羊群效应,跟风投资风险资产,致使金融市场的系统性风险上升. 此外,与不考虑模型不确定性相比,模型的不确定性使得投资者减少对风险资产的投资.
The stochastic differential portfolio game between two competing investors with undertaking of the relative performance concerns is studied. Assume that the financial market is composed of a risk-free asset and a risky asset whose price process is described by the classical Heston model. Under the framework of Nash equilibrium theory, a non-zero-sum stochastic differential portfolio game model is constructed which maximizes the expected utility of the terminal relative performance. Utilizing the dynamic programming principle, explicit expressions of the value functions and Nash equilibrium for portfolio decisions are obtained under the representative case the CRRA utility. Finally, some numerical examples are performed to illustrate the influence of model parameters on the Nash equilibrium together with some economic interpretations. Results show that, the best response of each investor to the competition is to mimic the strategy of its opponent. Consequently, the portfolio decision of an investor with the relative performance concern is more risky than that without the relative performance concern, and thus increases the systemic risk in financial markets. Moreover, model uncertainty will cause an risk-averse investor to adopt more conservative investment strategies than an ambiguity-neutral investor, which is reflected in the reduction of the amount invested in the risky asset.
投资组合博弈纳什均衡CRRA效用相对业绩模型不确定性
portfolio gameNash equilibriumCRRA utilityrelative performancemodel uncertainty
宾宁, 朱怀念, 2021. 考虑模糊厌恶和时滞效应的随机微分投资与再保险策略[J]. 系统工程理论与实践, 41(6): 1439-1453.
费为银, 李允贺, 夏登峰, 2015. 通胀下带激励的对冲基金最优投资[J]. 系统工程理论与实践, 35(11): 2740-2748.
莫仕茵, 朱怀念, 2023. 最优投资与风险控制策略的多人非零和博弈及平均场博弈[J]. 广东工业大学学报, 40(5): 123-132.
张弓亮,朱怀念,李洁茗,2019. 模型不确定性下的非零和随机微分投资与再保险博弈[J]. 系统工程,37(4):129-138.
周忠宝, 任甜甜, 肖和录, 等, 2019a. 资产收益序列相依下的多阶段投资博弈模型[J]. 管理科学学报, 22(7): 66-88.
周忠宝, 任甜甜, 肖和录, 等, 2019b. 基于相对财富效用的多阶段投资组合博弈模型[J]. 中国管理科学, 27(1): 34-43.
朱怀念,宾宁,张成科,2021. 一类双层非零和随机微分投资与再保险博弈模型[J].系统科学与数学,41(11):1-19.
BASAK S, MAKAROV D, 2014. Strategic asset allocation in money management[J]. J Finance, 69(1): 179-217.
BENSOUSSAN A, SIU C C, YAM S C P, et al, 2014. A class of non-zero-sum stochastic differential investment and reinsurance games[J]. Automatica, 50(8): 2025-2037.
CARPENTER J N, 2000. Does option compensation increase managerial risk appetite?[J]. J Finance, 55(5): 2311-2331.
CHEN S, YANG H, ZENG Y, 2018. Stochastic differential games between two insurers with generalized mean-variance premium principle[J]. ASTIN Bull, 48(1): 413-434.
DeMARZO P M, KANIEL R, KREMER I, 2008. Relative wealth concerns and financial bubbles[J]. Rev Financ Stud, 21(1): 19-50.
DENG C, ZENG X, ZHU H, 2018. Non-zero-sum stochastic differential reinsurance and investment games with default risk[J]. Eur J Oper Res, 264(3): 1144-1158.
dos REIS G, PLATONOV V, 2022. Forward utility and market adjustments in relative investment-consumption games of many players[J]. SIAM J Finan Math, 13(3): 844-876.
ESPINOSA G E, TOUZI N, 2015. Optimal investment under relative performance concerns[J]. Math Finance, 25(2): 221-257.
FU G, 2023. Mean field portfolio games with consumption[J]. Math Financ Econ, 17(1): 79-99.
GUAN G, LIANG Z, 2016. A stochastic Nash equilibrium portfolio game between two DC pension funds[J]. Insur Math Econ, 70: 237-244.
KRAFT H, MEYER-WEHMANN A, SEIFRIED F T, 2020. Dynamic asset allocation with relative wealth concerns in incomplete markets[J]. J Econ Dyn Contr, 113: 103857.
LACKER D, SORET A, 2020. Many-player games of optimal consumption and investment under relative performance criteria[J]. Math Financ Econ, 14(2): 263-281.
LACKER D, ZARIPHOPOULOU T, 2019. Mean field and n-agent games for optimal investment under relative performance criteria[J]. Math Finance, 29(4): 1003-1038.
LUO S, WANG M, ZHU W, 2021. Stochastic differential reinsurance games in diffusion approximation models[J]. J Comput Appl Math, 386: 113252.
MAENHOUT P J, 2004. Robust portfolio rules and asset pricing[J]. Rev Financ Stud, 17(4): 951-983.
MATARAMVURA S, ØKSENDAL B, 2008. Risk minimizing portfolios and HJBI equations for stochastic differential games[J]. Stochastics, 80(4): 317-337.
SIU C C, YAM S C P, YANG H, et al, 2017. A class of nonzero-sum investment and reinsurance games subject to systematic risks[J]. Scand Actuar J, 2017(8): 670-707.
WANG N, ZHANG N, JIN Z, et al, 2019. Robust non-zero-sum investment and reinsurance game with default risk[J]. Insur Math Econ, 84: 115-132.
YAN M, PENG F, ZHANG S, 2017. A reinsurance and investment game between two insurance companies with the different opinions about some extra information[J]. Insur Math Econ, 75: 58-70.
ZENG Y, LI D, CHEN Z, et al, 2018. Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility[J]. J Econ Dyn Contr, 88: 70-103.
0
浏览量
53
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构