1.兰州财经大学信息工程与人工智能学院,甘肃 兰州730101
2.兰州大学数学与统计学院, 甘肃 兰州 730000
3.甘肃省数学与统计学基础学科研究中心, 甘肃 兰州 730070
4.青海民族大学数学与统计学院, 青海 西宁 810007
5.兰州大学萃英学院, 甘肃 兰州 730000
FAN Xinman(fanxm@lzufe.edu.cn)
GAO Xing(gaoxing@lzu.edu.cn)
ZHANG Zhaotai(zhtzhang18@lzu.edu.cn)
纸质出版日期:2023-11-25,
网络出版日期:2023-08-31,
收稿日期:2022-05-31,
录用日期:2023-03-22
扫 描 看 全 文
樊馨蔓,高兴,张兆泰.Operad 𝒜sLC■𝒟end的Koszul性[J].中山大学学报(自然科学版),2023,62(06):135-142.
FAN Xinman,GAO Xing,ZHANG Zhaotai.Koszulity of the operad 𝒜sLC■𝒟end[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(06):135-142.
樊馨蔓,高兴,张兆泰.Operad 𝒜sLC■𝒟end的Koszul性[J].中山大学学报(自然科学版),2023,62(06):135-142. DOI: 10.13471/j.cnki.acta.snus.2022A050.
FAN Xinman,GAO Xing,ZHANG Zhaotai.Koszulity of the operad 𝒜sLC■𝒟end[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(06):135-142. DOI: 10.13471/j.cnki.acta.snus.2022A050.
用重写系统的方法证明了operad
<math id="M10"><mi mathvariant="normal">𝒜</mi><msup><mrow><mi>s</mi></mrow><mrow><mi mathvariant="normal">L</mi><mi mathvariant="normal">C</mi></mrow></msup><mo>■</mo><mi mathvariant="normal">𝒟</mi><mi>e</mi><mi>n</mi><mi>d</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51095177&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51095171&type=
15.66333294
2.87866688
是Koszul的,其中
<math id="M11"><mi mathvariant="normal">𝒜</mi><msup><mrow><mi>s</mi></mrow><mrow><mi mathvariant="normal">L</mi><mi mathvariant="normal">C</mi></mrow></msup><mo>■</mo><mi mathvariant="normal">𝒟</mi><mtext> </mtext><mi>e</mi><mi>n</mi><mi>d</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51095181&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51095180&type=
16.34066582
2.87866688
是结合operad
<math id="M12"><mtext> </mtext><mi mathvariant="normal">𝒜</mi><mi>s</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51095192&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51095190&type=
4.31799984
2.45533323
的线性相容operad和叶型operad
<math id="M13"><mi mathvariant="normal">𝒟</mi><mi>e</mi><mi>n</mi><mi>d</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51095203&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51095186&type=
6.85799980
2.28600001
的Manin 黑方积.
The Koszulity of the operad
<math id="M4"><mi mathvariant="normal">𝒜</mi><msup><mrow><mi>s</mi></mrow><mrow><mi mathvariant="normal">L</mi><mi mathvariant="normal">C</mi></mrow></msup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51095302&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51095300&type=
6.51933336
3.21733332
■
<math id="M5"><mi mathvariant="normal">𝒟</mi><mi>e</mi><mi>n</mi><mi>d</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51096213&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51096211&type=
8.04333401
2.62466669
in terms of the method of rewriting systems is proven
where
<math id="M6"><mi mathvariant="normal">𝒜</mi><msup><mrow><mi>s</mi></mrow><mrow><mi mathvariant="normal">L</mi><mi mathvariant="normal">C</mi></mrow></msup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51096205&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51096208&type=
6.51933336
3.21733332
■
<math id="M7"><mi mathvariant="normal">𝒟</mi><mi>e</mi><mi>n</mi><mi>d</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51096213&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51096211&type=
8.04333401
2.62466669
is the Manin black product of the linear compatible operad of the associative
<math id="M8"><mi mathvariant="normal">𝒜</mi><mi>s</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51095157&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51095156&type=
4.23333359
2.87866688
and the dendriform operad
<math id="M9"><mi mathvariant="normal">𝒟</mi><mi>e</mi><mi>n</mi><mi>d</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51095169&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51095168&type=
8.04333401
2.62466669
.
operadKoszul性线性相容operad叶型operadManin黑方积
operadKoszulitylinear compatible operaddendriform operadManin black product
BAADER F, NIPKOW T, 1998. Term rewriting and all that[M]. Cambridge: Cambridge University Press.
EBRAHIMI-FARD K, GUO L, 2005. On products and duality of binary, quadratic, regular operads[J]. J Pure Appl Algebra, 200(3): 293-317.
LODAY J L, 1993. Une version non commutative des algèbres de Lie: Les algèbres de Leibniz[J]. Ens Math, 39 : 269-289.
LODAY J L, VALLETTE B, 2012. Algebraic operads[M]. Berlin: Springer.
ODESSKII A, SOKOLOV V, 2006. Algebraic structures connected with pairs of compatible associative algebras[J]. Int Math Res Notices, 2006: 43734.
ODESSKII A, SOKOLOV V, 2008. Pairs of compatible associative algebras, classical Yang-Baxter equation and quiver representations[J].Commun Math Phys, 278(1): 83-99.
STROHMAYER H, 2008. Operads of compatible structures and weighted partitions[J]. J Pure Appl Algebra, 212(11): 2522-2534.
VALLETTE B, 2008. Manin products, Koszul duality, Loday algebras and Deligne conjecture[J]. Reine Angew Math, 620: 105-164.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构