广西民族大学数学与物理学院,广西 南宁 530006
牛冰洁(1997年生),女;研究方向:随机Loewner演变;E-mail:1480560354@qq.com
蓝师义(1966年生),男;研究方向:随机Loewner演变;E-mail:lanshiyi@gxmzu.edu.cn
纸质出版日期:2023-11-25,
网络出版日期:2023-09-26,
收稿日期:2022-03-16,
录用日期:2022-09-05
扫 描 看 全 文
牛冰洁,蓝师义.偶极SLEκ迹与圆盘相交的概率估计[J].中山大学学报(自然科学版),2023,62(06):143-151.
NIU Bingjie,LAN Shiyi.Estimate of the probability that the dipolar SLEκ trace intersects disks[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(06):143-151.
牛冰洁,蓝师义.偶极SLEκ迹与圆盘相交的概率估计[J].中山大学学报(自然科学版),2023,62(06):143-151. DOI: 10.13471/j.cnki.acta.snus.2022A026.
NIU Bingjie,LAN Shiyi.Estimate of the probability that the dipolar SLEκ trace intersects disks[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(06):143-151. DOI: 10.13471/j.cnki.acta.snus.2022A026.
设
<math id="M3"><mn mathvariant="normal">0</mn><mo><</mo><mi>κ</mi><mo><</mo><mn mathvariant="normal">8</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092757&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092735&type=
12.61533356
2.28600001
,首先导出上半平面
<math id="M4"><mi mathvariant="double-struck">H</mi><mo>=</mo><mo stretchy="false">{</mo><mi>z</mi><mtext> </mtext><mo>:</mo><mi mathvariant="normal">I</mi><mi mathvariant="normal">m</mi><mtext> </mtext><mi>z</mi><mo>></mo><mn mathvariant="normal">0</mn><mo stretchy="false">}</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092762&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092741&type=
23.11400032
2.87866688
内从
<math id="M5"><mn mathvariant="normal">1</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092786&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092780&type=
1.60866666
2.28600001
到区间
<math id="M6"><mo stretchy="false">(</mo><mo>-</mo><mi mathvariant="normal">∞</mi><mo>
</mo><mo>-</mo><mn mathvariant="normal">1</mn><mo stretchy="false">]</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092806&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092771&type=
11.34533310
2.96333337
的偶极
<math id="M7"><mi mathvariant="normal">S</mi><mi mathvariant="normal">L</mi><msub><mrow><mi mathvariant="normal">E</mi></mrow><mrow><mi>κ</mi></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092868&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092857&type=
6.43466663
3.21733332
迹与圆盘相交的概率表达式; 然后,得到带形区域
<math id="M8"><msub><mrow><mi mathvariant="italic">𝕊</mi></mrow><mrow><mi mathvariant="normal">π</mi></mrow></msub><mo>=</mo><mo stretchy="false">{</mo><mi>z</mi><mtext> </mtext><mo>:</mo><mn mathvariant="normal">0</mn><mo><</mo><mi mathvariant="normal">I</mi><mi mathvariant="normal">m</mi><mtext> </mtext><mi>z</mi><mo><</mo><mi mathvariant="normal">π</mi><mo stretchy="false">}</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092825&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092817&type=
29.71800041
3.80999994
内从
<math id="M9"><mn mathvariant="normal">0</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092842&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092828&type=
1.60866666
2.28600001
到上边界
<math id="M10"><msub><mrow><mi mathvariant="double-struck">R</mi></mrow><mrow><mi mathvariant="normal">π</mi></mrow></msub><mo>=</mo><mo stretchy="false">{</mo><mi>z</mi><mtext> </mtext><mo>:</mo><mi mathvariant="normal">I</mi><mi mathvariant="normal">m</mi><mtext> </mtext><mi>z</mi><mo>=</mo><mi mathvariant="normal">π</mi><mo stretchy="false">}</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092853&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092845&type=
24.72266769
3.80999994
的偶极
<math id="M11"><mi mathvariant="normal">S</mi><mi mathvariant="normal">L</mi><msub><mrow><mi mathvariant="normal">E</mi></mrow><mrow><mi>κ</mi></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092868&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092857&type=
6.43466663
3.21733332
迹与圆盘相交的概率估计. 这将上半平面
<math id="M12"><mi mathvariant="double-struck">H</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092873&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092862&type=
2.53999996
2.20133328
内通弦
<math id="M13"><mi mathvariant="normal">S</mi><mi mathvariant="normal">L</mi><msub><mrow><mi mathvariant="normal">E</mi></mrow><mrow><mi>κ</mi></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092890&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092876&type=
6.43466663
3.21733332
迹的相应概率估计推广到偶极
<math id="M14"><mi mathvariant="normal">S</mi><mi mathvariant="normal">L</mi><msub><mrow><mi mathvariant="normal">E</mi></mrow><mrow><mi>κ</mi></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51093105&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51093086&type=
6.43466663
3.21733332
的情形.
For
<math id="M15"><mtext> </mtext><mn mathvariant="normal">0</mn><mo><</mo><mi>κ</mi><mo><</mo><mn mathvariant="normal">8</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092914&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092913&type=
15.57866764
2.79399991
, an expression of the probability that the trace of dipolar
<math id="M16"><mi mathvariant="normal">S</mi><mi mathvariant="normal">L</mi><msub><mrow><mi mathvariant="normal">E</mi></mrow><mrow><mi>κ</mi></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092938&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092918&type=
7.45066643
3.80999994
in the upper half-plane
<math id="M17"><mi mathvariant="double-struck">H</mi><mo>=</mo><mo stretchy="false">{</mo><mi>z</mi><mtext> </mtext><mo>:</mo><mtext> </mtext><mi mathvariant="normal">I</mi><mi mathvariant="normal">m</mi><mtext> </mtext><mi>z</mi><mo>></mo><mn mathvariant="normal">0</mn><mo stretchy="false">}</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092945&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092943&type=
27.77066803
3.30200005
from
<math id="M18"><mn mathvariant="normal">1</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092970&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092950&type=
1.86266661
2.62466669
to interval
<math id="M19"><mo stretchy="false">(</mo><mo>-</mo><mi mathvariant="normal">∞</mi><mo>
</mo><mo>-</mo><mn mathvariant="normal">1</mn><mo stretchy="false">]</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092977&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092985&type=
13.20800018
3.47133350
intersects a disk is derived. Next, we obtain an estimate of the probability that the trace of dipolar
<math id="M20"><mi mathvariant="normal">S</mi><mi mathvariant="normal">L</mi><msub><mrow><mi mathvariant="normal">E</mi></mrow><mrow><mi>κ</mi></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51093015&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51092979&type=
7.45066643
3.80999994
in the strip domain
<math id="M21"><msub><mrow><mi mathvariant="double-struck">S</mi></mrow><mrow><mi mathvariant="normal">π</mi></mrow></msub><mo>=</mo><mo stretchy="false">{</mo><mi>z</mi><mtext> </mtext><mo>:</mo><mtext> </mtext><mn mathvariant="normal">0</mn><mo><</mo><mi mathvariant="normal">I</mi><mi mathvariant="normal">m</mi><mtext> </mtext><mi>z</mi><mo><</mo><mi mathvariant="normal">π</mi><mo stretchy="false">}</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51093020&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51093005&type=
35.39066696
4.40266657
from
<math id="M22"><mn mathvariant="normal">0</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51093032&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51093023&type=
1.86266661
2.70933342
to the upper boundary
<math id="M23"><mtext> </mtext><msub><mrow><mi mathvariant="double-struck">R</mi></mrow><mrow><mi mathvariant="normal">π</mi></mrow></msub><mo>=</mo><mo stretchy="false">{</mo><mi>z</mi><mtext> </mtext><mo>:</mo><mtext> </mtext><mi mathvariant="normal">I</mi><mi mathvariant="normal">m</mi><mtext> </mtext><mi>z</mi><mo>=</mo><mi mathvariant="normal">π</mi><mo stretchy="false">}</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51093038&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51093043&type=
30.39533424
4.40266657
intersects a disk is obtained. This generalizes the estimate of corresponding probability for chordal
<math id="M24"><mi mathvariant="normal">S</mi><mi mathvariant="normal">L</mi><msub><mrow><mi mathvariant="normal">E</mi></mrow><mrow><mi>κ</mi></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51093053&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51093048&type=
7.45066643
3.80999994
in
<math id="M25"><mi mathvariant="double-struck">H</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51093065&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51093062&type=
2.87866688
2.53999996
to the case of dipolar
<math id="M26"><mi mathvariant="normal">S</mi><mi mathvariant="normal">L</mi><msub><mrow><mi mathvariant="normal">E</mi></mrow><mrow><mi>κ</mi></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51093080&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51093077&type=
7.45066643
3.80999994
.
通弦<math id="M27"><mi mathvariant="normal">S</mi><mi mathvariant="normal">L</mi><msub><mrow><mi mathvariant="normal">E</mi></mrow><mrow><mi>κ</mi></mrow></msub></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51093091&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51093090&type=6.434666633.21733332偶极<math id="M28"><mi mathvariant="normal">S</mi><mi mathvariant="normal">L</mi><msub><mrow><mi mathvariant="normal">E</mi></mrow><mrow><mi>κ</mi></mrow></msub></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51093105&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51093086&type=6.434666633.21733332相交概率
chordal<math id="M29"><mtext> </mtext><mi mathvariant="normal">S</mi><mi mathvariant="normal">L</mi><msub><mrow><mi mathvariant="normal">E</mi></mrow><mrow><mi>κ</mi></mrow></msub></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51093097&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51093095&type=8.212666513.89466691dipolar <math id="M30"><mi mathvariant="normal">S</mi><mi mathvariant="normal">L</mi><msub><mrow><mi mathvariant="normal">E</mi></mrow><mrow><mi>κ</mi></mrow></msub></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51093116&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51093113&type=7.450666433.80999994intersection probability
BAUER M, BERNARD D, HOUDAYER J, 2005. Dipolar stochastic Loewner evolutions[J]. J Stat Mech Theory Exp, 2005(3): P03001.
BEFFARA V, 2004. Hausdorff dimensions for<math id="M583"><mtext> </mtext><mi mathvariant="normal">S</mi><mi mathvariant="normal">L</mi><msub><mrow><mi mathvariant="normal">E</mi></mrow><mrow><mn mathvariant="normal">6</mn></mrow></msub></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51095804&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51095786&type=7.027333743.30200005[J]. Ann Probab, 32(3B): 2606-2629.
BEFFARA V, 2008. The dimension of the SLE curves[J]. Ann Probab, 36(4): 1421-1452.
CHELKAK D, HONGLER C, IZYUROV K, 2015. Conformal invariance of spin correlations in the planar Ising model[J]. Ann Math, 181(3): 1087-1138.
CHELKAK D, SMIRNOV S, 2012. Universality in the 2D Ising model and conformal invariance of fermionic observables[J]. Invent Math, 189(3): 515-580.
GWYNNE E, MILLER J, 2021. Convergence of the self-avoiding walk on random quadrangulations to <math id="M584"><mi mathvariant="normal">S</mi><mi mathvariant="normal">L</mi><msub><mrow><mi mathvariant="normal">E</mi></mrow><mrow><mrow><mrow><mn mathvariant="normal">8</mn></mrow><mo>/</mo><mrow><mn mathvariant="normal">3</mn></mrow></mrow></mrow></msub><mtext> </mtext></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51095794&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51095792&type=8.551333433.13266683on <math id="M585"><mroot><mrow><mrow><mrow><mn mathvariant="normal">8</mn></mrow><mo>/</mo><mrow><mn mathvariant="normal">3</mn></mrow></mrow></mrow><mrow/></mroot></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51095798&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51095796&type=7.281332974.14866638-Liouville quantum gravity[J]. Ann Sci Éc Norm Supér, 54(2): 305-405.
KAGER W, NIENHUIS B, 2004. A guide to stochastic Löwner evolution and its applications[J]. J Stat Phys, 115(5): 1149-1229.
KEMPPAINEN A, 2017. Schramm-Loewner evolution[M]. Cham: Springer.
LAWLER G F, 2005. Conformally invariant processes in the plane[M]. Providence, RI: American Mathematical Society.
LAWLER G F, 2009. Multifractal analysis of the reverse flow for the Schramm-Loewner evolution[M]//BANDT C, et al. ed. Fractal Geometry and Stochastics IV, Progress in Probability, vol 61. Basel: Birkhäuser: 73-107.
LAWLER G F, SCHRAMM O, WERNER W, 2001a. The dimension of the planar Brownian frontier is 4/3[J]. Math Res Lett, 8(4): 401-411.
LAWLER G F, SCHRAMM O, WERNER W, 2001b. Values of Brownian intersection exponents, I: Half-plane exponents[J]. Acta Math, 187(2): 237-273.
LAWLER G F, SCHRAMM O, WERNER W, 2001c. Values of Brownian intersection exponents, II: Plane exponents[J]. Acta Math, 187(2): 275-308.
LAWLER G F, SCHRAMM O, WERNER W, 2002a. Values of Brownian intersection exponents, III: Two-sided exponents[J]. Ann Inst Henri Poincare B Probab Stat, 38(1): 109-123.
LAWLER G F, SCHRAMM O, WERNER W, 2002b. On the scaling limit of planar self-avoiding walk[J]. Mathematics, 2: 339-364.
LAWLER G F, SCHRAMM O, WERNER W, 2004. Conformal invariance of planar loop-erased random walks and uniform spanning trees[J]. Ann Probab, 32(1B): 939-995.
MARSHALL D, ROHDE S, 2005. The Loewner differential equation and slit mappings[J]. J Amer Math Soc, 18(4): 763-778.
SCHRAMM O, 2000. Scaling limits of loop-erased random walks and uniform spanning trees[J]. Isr J Math, 118(1): 221-288.
SCHRAMM O, SHEFFIELD S, 2005. Harmonic explorer and its convergence to <math id="M586"><mi mathvariant="normal">S</mi><mi mathvariant="normal">L</mi><msub><mrow><mi mathvariant="normal">E</mi></mrow><mrow><mn mathvariant="normal">4</mn></mrow></msub></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51095809&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51095807&type=6.349999903.21733332[J]. Ann Probab, 33(6): 2127-2148.
SCHRAMM O, SHEFFIELD S, 2009. Contour lines of the two-dimensional discrete Gaussian free field[J]. Acta Math, 202(1): 21-137.
SMIRNOV S, 2001. Critical percolation in the plane: Conformal invariance, Cardy's formula, scaling limits[J]. C R Acad Sci Paris Sér I Math, 333(3): 239-244.
SMIRNOV S, 2007. Towards conformal invariance of 2D lattice models[J]. Marta Sanz Solé: 1421-1451.
SMIRNOV S, 2010. Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model[J]. Ann Math, 172(2): 1435-1467.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构