1.长安大学理学院,陕西 西安 710064
2.西安工程大学理学院,陕西 西安 710048
康玉娇(1998年生),女;研究方向:生物数学;E-mail:kyj980410@163.com
张太雷(1980年生),男;研究方向:常微分方程及其应用;E-mail:tlzhang@chd.edu.cn
纸质出版日期:2023-05-25,
网络出版日期:2023-03-19,
收稿日期:2022-01-16,
录用日期:2022-09-21
扫 描 看 全 文
康玉娇,张太雷,马怡婷等.一类具有复发和潜伏期传染的SEICR丙肝模型[J].中山大学学报(自然科学版),2023,62(03):149-160.
KANG Yujiao,ZHANG Tailei,MA Yiting,et al.An SEICR hepatitis C model with relapse and latent infection[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(03):149-160.
康玉娇,张太雷,马怡婷等.一类具有复发和潜伏期传染的SEICR丙肝模型[J].中山大学学报(自然科学版),2023,62(03):149-160. DOI: 10.13471/j.cnki.acta.snus.2022A008.
KANG Yujiao,ZHANG Tailei,MA Yiting,et al.An SEICR hepatitis C model with relapse and latent infection[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(03):149-160. DOI: 10.13471/j.cnki.acta.snus.2022A008.
依据丙肝的传播机理,我们建立了一类潜伏期具有传染性并且考虑复发效应的SEICR丙肝模型,给出了模型的基本再生数。证明了当
<math id="M1"><msub><mrow><mi mathvariant="normal">ℛ</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow></msub><mo><</mo><mn mathvariant="normal">1</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49423463&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49423462&type=
9.22866726
3.30200005
时,无病平衡点全局渐近稳定;当
<math id="M2"><msub><mrow><mi mathvariant="normal">ℛ</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow></msub><mo>></mo><mn mathvariant="normal">1</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49423475&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49423464&type=
9.22866726
3.30200005
时,无病平衡点不稳定且地方病平衡点全局渐近稳定。选取陕西省丙肝患者病例数据,利用模型数值模拟未来几年丙肝的流行趋势。最后进行参数的敏感性分析,结果表明近几年丙肝患者还将持续增加。提高公众对丙肝的检测意识、加强免疫力可以提升丙肝患者的恢复率同时减少疾病复发的可能性,这样可以控制丙肝的进一步蔓延。
According to the transmission mechanism of hepatitis C, we establish an SEICR hepatitis C model with infectious latency and relapse effect, and give the basic reproductive number of the model. It is proved that the disease-free equilibrium is globally asymptotically stable when
<math id="M3"><msub><mrow><mi mathvariant="normal">ℛ</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow></msub><mo><</mo><mn mathvariant="normal">1</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49423476&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49423466&type=
10.66800022
3.80999994
;the disease-free equilibrium is unstable and the endemic equilibrium is globally asymptotically stable when
<math id="M4"><msub><mrow><mi mathvariant="normal">ℛ</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow></msub><mo>></mo><mn mathvariant="normal">1</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49423478&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49423477&type=
10.66800022
3.80999994
. Choosing the case data of hepatitis C patients of Shaanxi Province, we use the model to simulate the epidemic trend of hepatitis C in the next a few years. Finally, the sensitivity analysis of parameters shows that the number of hepatitis C cases will continue to increase in recent years. Improving public awareness of hepatitis C detection and strengthening immunity can improve the recovery rate of hepatitis C patients and reduce the proportion of disease relapse, so as to control the further spread of hepatitis C.
SEICR模型丙型肝炎稳定性数值模拟
SEICR modelhepatitis Cstabilitynumerical simulation
董亚丽, 2017.关于丙型病毒性肝炎的动力学性态分析[D].太原:中北大学.
贾璐,张国洪, 2021.考虑DAAs治疗的丙肝病毒RNA模型的全局稳定性分析[J].西南大学学报(自然科学版), 43(5): 83-87.
马知恩,周义仓, 2001.常微分方程定性与稳定性方法[M].北京:北京科学出版社.
王嫒,贾建文, 2021.具有Lévy噪声的丙肝流行病随机模型[J].应用数学, 34(4): 855-862.
张太雷,刘俊利,王凯, 2016.常微分方程教程[M].西安:西北工业大学出版社.
CHEN S L, MORGAN T R, 2006. The natural history of hepatitis C virus (HCV) infection[J]. Int J Med Sci, 3(2): 47-52.
CUI J A, ZHAO S, GUO S, et al, 2020. Global dynamics of an epidemiological model with acute and chronic HCV infections[J]. Appl Math Lett, 103: 106203.
ELBASHA E H, 2013. Model for hepatitis C virus transmissions[J]. Math Biosci Eng, 10(4): 1045-1065.
KITAGAWA K, KUNIYA T, NAKAOKA S, et al, 2019. Mathematical analysis of a transformed ODE from a PDE multiscale model of hepatitis C virus infection[J]. Bull Math Biol, 81(5): 1427-1441.
LASALLE J P, 1976. The stability of dynamical systems[M]. Philadelphia: SIAM.
MURAKAMI C, HINO K, KORENAGA M, et al, 1999. Factors predicting progression to cirrhosis and hepatocellular carcinoma in patients with transfusion-associated hepatitis C virus infection[J]. J Clin Gastroenterol, 28(2): 148-152.
RAO H Y, DUAN Z P, WANG G Q, et al, 2020. Highlights of the guidelines of prevention and treatment for hepatitis C (2019 version)[J]. Zhonghua Gan Zang Bing Za Zhi, 28(2): 129-132.
STOCKS T, MARTIN L J, KÜHLMANN-BERENZON S, et al, 2020. Dynamic modeling of hepatitis C transmission among people who inject drugs[J]. Epidemics, 30: 100378.
van den DRIESSCHE P, WATMOUGH J, 2002. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Math Biosci, 180(1/2): 29-48.
YUAN J, YANG Z, 2008. Global dynamics of an SEI model with acute and chronic stages[J]. J Comput Appl Math, 213(2): 465-476.
ZEILER I, LANGLANDS T, MURRAY J M, et al, 2010. Optimal targeting of hepatitis C virus treatment among injecting drug users to those not enrolled in methadone maintenance programs[J]. Drug Alcohol Dependence, 110(3): 228-233.
ZHANG S, ZHOU Y, 2012. Dynamics and application of an epidemiological model for hepatitis C[J]. Math Comput Modelling, 56(1/2): 36-42.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构