宝鸡文理学院数学与信息科学学院,陕西 宝鸡 721013
蔡中博(1996年生),男;研究方向:偏微分方程;E-mail:rebirthzbcai@163.com
赵继红(1982年生),男;研究方向:偏微分方程;E-mail:jihzhao@163.com
纸质出版日期:2023-03-25,
网络出版日期:2022-12-30,
收稿日期:2022-01-10,
录用日期:2022-02-21
扫 描 看 全 文
蔡中博,赵继红,罗永轲.分数阶趋化模型自相似解的整体存在性和渐近稳定性[J].中山大学学报(自然科学版),2023,62(02):181-188.
CAI Zhongbo,ZHAO Jihong,LUO Yongke.Global existence and asymptotic stability of self-similar solutions for the fractional chemotaxis model[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(02):181-188.
蔡中博,赵继红,罗永轲.分数阶趋化模型自相似解的整体存在性和渐近稳定性[J].中山大学学报(自然科学版),2023,62(02):181-188. DOI: 10.13471/j.cnki.acta.snus.2022A005.
CAI Zhongbo,ZHAO Jihong,LUO Yongke.Global existence and asymptotic stability of self-similar solutions for the fractional chemotaxis model[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(02):181-188. DOI: 10.13471/j.cnki.acta.snus.2022A005.
主要考虑了一类分数阶趋化模型,是生物学中描述趋化现象的Keller-Segel模型的推广模型。基于热半群在伪测度空间中的线性和非线性估计,建立了该模型自相似解的整体存在性和唯一性。还利用Lebesgue控制收敛定理建立了该模型自相似解当时间趋于无穷时的渐近稳定性。
A class of fractional chemotaxis model is concerned, which is a generalized model of the Keller-Segel equations arising from biology in describing chemotaxis phenomenon. Based on the linear and nonlinear estimates of the heat semi-group in the pseudo-measure space, the global existence and uniqueness of self-similar solutions are established. Moreover, by applying the Lebesgue dominated convergence theorem, the asymptotic stability of self-similar solutions are also established as time tends to infinity.
分数阶趋化模型伪测度空间自相似解渐近稳定性
fractional chemotaxis modelpseudo-measure spaceself-similar solutionsasymptotic stability
BILER P, CANNONE M, 2004. Global regular and singular solutions for a model of gravitating particles[J]. Math Ann, 330(4): 693-708.
BILER P, KARCH G, 2010. Blowup of solutions to generalized Keller-Segel model[J]. J Evol Equ, 10(2): 247-262.
CANNONE M, KARCH G, 2004. Smooth or singular solutions to the Navier-Stokes system?[J]. J Differential Equations, 197(2): 247-274.
CHEN X, 2018. Well-posedness of the Keller-Segel system in Fourier-Besov-Morrey spaces[J]. Z Anal Anwend, 37(4): 417-433.
ESCUDERO C, 2006. The fractional Keller-Segel model[J]. Nonlinearity, 19(12): 2909-2918.
HORSTMANN D, 2003. From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I[J]. Jahresber Deutsch Math Verein, 105(3): 103-165.
HORSTMANN D, 2004. From 1970 until present: The Keller-Segel model in chemotaxis and its consequences II[J]. Jahresber Deutsch Math Verein, 106(2): 51-69.
KELLER E F, SEGEL L A, 1970. Initiation of slime mold aggregation viewed as an instability[J]. J Theor Biol, 26(3): 399-415.
LEMARIÉ P G, 2002. Recent developments in the Navier-Stokes problem[M]. Boca Raton:Chapman & Hall/CRC.
LIU Q, ZHAO J, CUI S, 2012. Existence and regularizing rate estimates of solutions to a generalized magneto-hydrodynamic system in pseudomeasure spaces[J]. Ann Mat Pura Appl, 191(2): 293-309.
SHI R K, 2019. Global existence of solutions to the Keller-Segel system with initial data large mass[J]. Chin Quart J Math, 34:352-361.
STEIN E M, 1970. Singular integrals and differentiability properties of functions[M]. Princeton:Princeton University Press.
SUGIYAMA Y, YAMAMOTO M, KATO K, 2015. Local and global solvability and blow up for the drift-diffusion equation with the fractional dissipation in the critical space[J]. J Differential Equations, 258(9): 2983-3010.
SUGURO T, 2021. Well-posedness and unconditional uniqueness of mild solutions to the Keller-Segel system in uniformly local spaces[J]. J Evol Equ, 21(4): 4599-4618.
ZHAO J, 2018. Well-posedness and Gevrey analyticity of the generalized Keller-Segel system in critical Besov spaces[J]. Ann Mat Pura Appl, 197(2): 521-548.
ZHAO J, DENG C, CUI S, 2011. Global existence and asymptotic behavior of self-similar solutions for the Navier-Stokes-Nernst-Planck-Poisson system in <math id="M283"><mi mathvariant="double-struck">R</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49426811&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49426809&type=2.286000012.286000013[J]. Int J Differ Equ, 329014.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构