华南农业大学动物科学学院 / 广东省动物营养调控重点实验室 / 国家生猪种业工程技术研究 中心, 广东 广州 510642
周浩(1996年生),男;研究方向:动物营养调控;E-mail:614234091@stu.scau.edu.cn
习欠云(1972年生),男;研究方向:动物营养与表观遗传学;E-mail:xqy0228@ scau.edu.cn
纸质出版日期:2022-11-25,
网络出版日期:2022-03-30,
收稿日期:2021-12-19,
录用日期:2022-01-17
扫 描 看 全 文
周浩,吴佳韩,陈婷等.miR-130a-3p调节有氧代谢提高小鼠运动耐力[J].中山大学学报(自然科学版),2022,61(06):51-59.
ZHOU Hao,WU Jiahan,CHEN Ting,et al.MiR-130a-3p regulates aerobic metabolism to improve exercise endurance in mice[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(06):51-59.
周浩,吴佳韩,陈婷等.miR-130a-3p调节有氧代谢提高小鼠运动耐力[J].中山大学学报(自然科学版),2022,61(06):51-59. DOI: 10.13471/j.cnki.acta.snus.2021E052.
ZHOU Hao,WU Jiahan,CHEN Ting,et al.MiR-130a-3p regulates aerobic metabolism to improve exercise endurance in mice[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(06):51-59. DOI: 10.13471/j.cnki.acta.snus.2021E052.
为探讨miR-130a-3p调节有氧代谢对小鼠运动耐力的影响,选取3周龄生长性能相近的野生型(WT)、miR-130a-3p过表达(130OE)与敲除(130KO)型的FVB雄性小鼠各10只,在高脂饲料喂养条件下,每3 d记录1次小鼠采食量,每周记录1次体质量,并在第5周检测小鼠的肌肉力量、运动耐力,第6周测量小鼠有氧代谢情况。结果显示,与WT小鼠相比,130OE和130KO小鼠的采食量均无显著差异,但130OE小鼠的体增量显著降低(
P
<0.05),而130KO小鼠体质量和体增量均显著大于WT小鼠(
P
<0.05);相对于WT小鼠,130OE小鼠CO
2
产生量显著上升(
P
<0.01),130KO小鼠的耗氧量与CO
2
产生量均显著下降(
P
<0.01);而且130KO小鼠的产热量也显著低于WT小鼠(
P
<0.01)。在运动耐力方面,与WT小鼠相比,130OE小鼠的运动时间与距离均显著上升(
P
<0.05),而130KO小鼠均极显著下降(
P
<0.01)。结果表明,miR-130a-3p过表达能够提高小鼠的有氧代谢,降低小鼠体质量,增强小鼠运动耐力的作用。结果为深入研究miR-130a-3p对骨骼肌能量代谢及其运动机能的调节机制提供了前期基础。
The purpose of this study is to investigate the effect of miR-130a-3p in regulating aerobic metabolism in exercise endurance in mice. Ten of 3-week-old wild type (WT), miR-130a-3p overexpression (130OE) and knockout (130KO) FVB male mice with similar growth performance were selected respectively for each group. Under the condition of high-fat diet feeding, the food intake of the mice was recorded every 3 days, the body mass was recorded once a week, the muscle strength and exercise endurance were measured in the 5th week, and the aerobic metabolism was measured in the 6th week. The results showed that compared with WT mice, the food intake of 130OE and 130KO mice were not significantly different, but the body mass gain of 130OE mice was significantly reduced (
P
<
0.05), while the body mass and body mass gain of 130KO mice were both higher than WT mice (
P
<
0.05). Compared with that of WT mice, CO
2
production in 130OE mice increased significantly (
P
<
0.01), while O
2
consumption and CO
2
production in 130KO mice decreased significantly (
P
<
0.01). 130KO mice also had lower heat production than that of WT mice (
P
<
0.01). In terms of exercise endurance, the exercise endurance and distance of 130OE mice were increased (
P
<
0.05) compared with WT mice, while those of 130KO mice were significantly decreased(
P
<
0.01). The results showed that miR-130a-3p overexpression can improve aerobic metabolism, reduce body mass, and enhance the effect of exercise endurance in mice, and provided a preliminary basis for further research on the regulation mechanism of miR-130a-3p on skeletal muscle energy metabolism and motor function.
miRNAmiR-130a-3p运动耐力有氧代谢
miRNAmiR-130a-3pexercise enduranceaerobic metabolism
BARTEL D P. MicroRNAs: Genomics, biogenesis, mechanism, and function[J]. Cell, 2004,116(2): 281-297.
HORVITZ H R, SULSTON J E. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans[J]. Genetics, 1980,96(2): 435-454.
LEE R C, FEINBAUM R L, AMBROS V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-144/I[J]. Cell, 1993,75(5): 843-854.
WIGHTMAN B, HA I, RUVKUN G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans[J]. Cell, 1993,75(5): 855-862.
HAMMOND S M. An overview of microRNAs[J]. Advanced Drug Delivery Reviews, 2015,87: 3-14.
SHEN L, GAN M, LI Q, et al. MicroRNA-200b regulates preadipocyte proliferation and differentiation by targeting KLF4[J].Biomedicine & Pharmacotherapy, 2018,103: 1538-1544.
WANG R, XU B, XU H. TGF-β1 promoted chondrocyte proliferation by regulating Sp1 through MSC-exosomes derived miR-135b[J]. Cell Cycle, 2018,17(24): 2756-2765.
WU X, ZHAO X, MIAO X. MicroRNA-374b promotes the proliferation and differentiation of neural stem cells through targeting Hes1[J]. Biochemical and Biophysical Research Communications, 2018,503(2): 593-599.
WANG Y P, ZHAO P, LIU J Y, et al. MicroRNA-132 stimulates the growth and invasiveness of trophoblasts by targeting DAPK-1[J]. European Review for Medical and Pharmacological Sciences, 2020,24(19): 9837-9843.
OUYANG D, YE Y, GUO D, et al. MicroRNA-125b-5p inhibits proliferation and promotes adipogenic differentiation in 3T3-L1 preadipocytes[J]. Acta Biochimica et Biophysica Sinica, 2015,47(5): 355-361.
LI X, YUAN J, CAO Q, et al. MicroRNA‑383‑5p inhibits the proliferation and promotes the apoptosis of gastric cancer cells by targeting cancerous inhibitor of PP2A[J]. International Journal of Molecular Medicine, 2020,46(1): 397-405.
JAMALI L, TOFIGH R, TUTUNCHI S, et al. Circulating microRNAs as diagnostic and therapeutic biomarkers in gastric and esophageal cancers[J]. Journal of Cellular Physiology, 2018,233(11): 8538-8550.
PAUL P, CHAKRABORTY A, SARKAR D, et al. Interplay between miRNAs and human diseases[J]. Journal of Cellular Physiology, 2018,233(3): 2007-2018.
SALEHI M, SHARIFI M. Exosomal miRNAs as novel cancer biomarkers: Challenges and opportunities[J]. Journal of Cellular Physiology, 2018,233(9): 6370-6380.
TIAN H, WANG X, LU J, et al. MicroRNA-621 inhibits cell proliferation and metastasis in bladder cancer by suppressing Wnt/β-catenin signaling[J]. Chemico-Biological Interactions, 2019,308:244-251.
KE R, LV L, ZHANG S, et al. Functional mechanism and clinical implications of MicroRNA‐423 in human cancers[J]. Cancer Medicine, 2020,9(23): 9036-9051.
XU H, DU X, XU J, et al. Pancreatic β cell microRNA-26a alleviates type 2 diabetes by improving peripheral insulin sensitivity and preserving β cell function[J]. PLoS Biology, 2020,18(2): e3000603.
XU L, LI Y, YIN L, et al. MiR-125a-5p ameliorates hepatic glycolipid metabolism disorder in type 2 diabetes mellitus through targeting of STAT3[J]. Theranostics, 2018,8(20): 5593-5609.
ZHENG H, LIU J, TYCKSEN E, et al. MicroRNA-181a/b-1 over-expression enhances osteogenesis by modulating PTEN/PI3K/AKT signaling and mitochondrial metabolism[J]. Bone, 2019,123: 92-102.
BHATIA H, PATTNAIK B R, DATTA M. Inhibition of mitochondrial β-oxidation by miR-107 promotes hepatic lipid accumulation and impairs glucose tolerance in vivo[J]. International Journal of Obesity, 2016,40(5): 861-869.
LI K, ZHAO B, WEI D, et al. MiR‑146a improves hepatic lipid and glucose metabolism by targeting MED1[J]. International Journal of Molecular Medicine, 2019,45(2): 543-555.
NASCI V L, CHUPPA S, GRISWOLD L, et al. MiR-21-5p regulates mitochondrial respiration and lipid content in H9C2 cells[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2019,316(3): H710-H721.
DÁVALOS A, GOEDEKE L, SMIBERT P, et al. MiR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling[J]. Proceedings of the National Academy of Sciences, 2011,108(22): 9232-9237.
KONOPKA A R, CASTOR W M, WOLFF C A, et al. Skeletal muscle mitochondrial protein synthesis and respiration in response to the energetic stress of an ultra-endurance race[J]. Journal of Applied Physiology, 2017,123(6): 1516-1524.
CHEN J, MANDEL E M, THOMSON J M, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J]. Nature Genetics, 2006,38(2): 228-233.
CAI R, QIMUGE N, MA M, et al. MicroRNA-664-5p promotes myoblast proliferation and inhibits myoblast differentiation by targeting serum response factor and Wnt1[J]. Journal of Biological Chemistry, 2018,293(50): 19177-19190.
QIU H, LIU N, LUO L, et al. MicroRNA-17-92 regulates myoblast proliferation and differentiation by targeting the ENH1/Id1 signaling axis[J]. Cell Death & Differentiation, 2016,23(10): 1658-1669.
NIE Y, SATO Y, WANG C, et al. Impaired exercise tolerance, mitochondrial biogenesis, and muscle fiber maintenance in miR-133a-deficient mice[J]. The FASEB Journal, 2016,30(11): 3745-3758.
QUEIROZ A L, LESSARD S J, OUCHIDA A T, et al. The MicroRNA miR-696 is regulated by SNARK and reduces mitochondrial activity in mouse skeletal muscle through Pgc1α inhibition[J]. Molecular Metabolism, 2021,51: 101226.
IWASAKI H, ICHIHARA Y, MORINO K, et al. MicroRNA-494-3p inhibits formation of fast oxidative muscle fibres by targeting E1A-binding protein p300 in human-induced pluripotent stem cells[J]. Scientific Reports, 2021,11(1): 1161.
HOUZELLE A, DAHLMANS D, NASCIMENTO E B M, et al. MicroRNA‐204‐5p modulates mitochondrial biogenesis in C2C12 myotubes and associates with oxidative capacity in humans[J]. Journal of Cellular Physiology, 2020,235(12): 9851-9863.
LIU J, LIANG X, ZHOU D, et al. Coupling of mitochondrial function and skeletal muscle fiber type by a miR‐499/Fnip1/AMPK circuit[J]. EMBO Molecular Medicine, 2016,8(10): 1212-1228.
GARZON R, PICHIORRI F, PALUMBO T, et al. MicroRNA fingerprints during human megakaryocytopoiesis[J]. Proceedings of the National Academy of Sciences, 2006,103(13): 5078-5083.
WANG Y, DU J, NIU X, et al. MiR-130a-3p attenuates activation and induces apoptosis of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis by directly targeting TGFBR1 and TGFBR2[J]. Cell Death & Disease, 2017,8(5): e2792.
ZHANG Y, XU S, HUANG E, et al. MicroRNA-130a regulates chondrocyte proliferation and alleviates osteoarthritis through PTEN/PI3K/Akt signaling pathway[J]. International Journal of Molecular Medicine, 2018,41(6): 3699-3708.
AI K, ZHU X, KANG Y, et al. MiR-130a-3p inhibition protects against renal fibrosis in vitro via the TGF-β1/Smad pathway by targeting SnoN[J]. Experimental and Molecular Pathology, 2020,112: 104358.
WU J, DONG T, CHEN T, et al. Hepatic exosome-derived miR-130a-3p attenuates glucose intolerance via suppressing PHLPP2 gene in adipocyte[J]. Metabolism, 2020,103: 154006.
ZHANG H, CHEN T, XIONG J, et al. MiR-130a-3p inhibits PRL expression and is associated with heat stress-induced PRL reduction[J]. Frontiers in Endocrinology, 2020,11: 92.
LAHIRI S, KIM H, GARCIA-PEREZ I, et al. The gut microbiota influences skeletal muscle mass and function in mice[J]. Science Translational Medicine, 2019,11(502).
JANICE SÁNCHEZ B, TREMBLAY A K, LEDUC-GAUDET J, et al. Depletion of HuR in murine skeletal muscle enhances exercise endurance and prevents cancer-induced muscle atrophy[J]. Nature Communications, 2019,10(1): 4171.
de FEO P, di LORETO C, LUCIDI P, et al. Metabolic response to exercise[J]. Journal of Endocrinological Investigation, 2003,26(9): 851-854.
TE PAS M F W, de WIT A A W, PRIEM J, et al. Transcriptome expression profiles in prenatal pigs in relation to myogenesis[J]. Journal of Muscle Research & Cell Motility, 2005,26(2/3): 157-165.
ABERLE E D. Myofiber differentiation in skeletal muscles of newborn runt and normal weight pigs1[J]. Journal of Animal Science, 1984,59(6): 1651-1656.
TE K G, REGGIANI C. Skeletal muscle fibre type specification during embryonic development[J].
Journal of Muscle Research and Cell Motility, 2002,23(1): 65-69.
HOLLOSZY J O, COYLE E F. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences[J]. Journal of Applied Physiology, 1984,56(4): 831-838.
GOLLNICK P D, ARMSTRONG R B, SAUBERT C W, et al. Enzyme activity and fiber composition in skeletal muscle of untrained and trained men[J]. Journal of Applied Physiology, 1972,33(3): 312-319.
GONDRET F, COMBES S, LEFAUCHEUR L, et al. Effects of exercise during growth and alternative rearing systems on muscle fibers and collagen properties[J]. Reproduction Nutrition Development, 2005,45(1): 69-86.
HENNESSEY J V, CHROMIAK J A, DELLAVENTURA S, et al. Growth hormone administration and exercise effects on muscle fiber type and diameter in moderately frail older people[J]. Journal of the American Geriatrics Society, 2001,49(7): 852-858.
SCHANTZ P G, DHOOT G K. Coexistence of slow and fast isoforms of contractile and regulatory proteins in human skeletal muscle fibres induced by endurance training[J]. Acta Physiologica Scandinavica, 1987,131(1): 147-154.
REYES-FERNANDEZ P C, PERIOU B, DECROUY X, et al. Automated image-analysis method for the quantification of fiber morphometry and fiber type population in human skeletal muscle[J]. Skeletal Muscle, 2019,9(1): 15.
LJUBICIC V, BURT M, LUNDE J A, et al. Resveratrol induces expression of the slow, oxidative phenotype in mdx mouse muscle together with enhanced activity of the SIRT1-PGC-1α axis[J]. American Journal of Physiology-Cell Physiology, 2014,307(1): C66-C82.
HAMBRECHT R, FIEHN E, YU J, et al. Effects of endurance training on mitochondrial ultrastructure and fiber type distribution in skeletal muscle of patients with stable chronic heart failure[J].Journal of the American College of Cardiology, 1997,29(5): 1067-1073.
ESHIMA H, TAMURA Y, KAKEHI S, et al. Maintenance of contractile force and increased fatigue resistance in slow-twitch skeletal muscle of mice fed a high-fat diet[J]. Journal of Applied Physiology, 2021,130(3): 528-536.
ZHANG Y, YAN H, ZHOU P, et al. MicroRNA-152 promotes slow-twitch myofiber formation via targeting uncoupling protein-3 gene[J]. Animals, 2019,9(9): 669.
WEI H, LI Z, WANG X, et al. MicroRNA-151-3p regulates slow muscle gene expression by targeting ATP2a2 in skeletal muscle cells[J]. Journal of Cellular Physiology, 2015,230(5): 1003-1012.
WEN W, CHEN X, HUANG Z, et al. MiR-22-3p regulates muscle fiber-type conversion through inhibiting AMPK/SIRT1/PGC-1α pathway[J]. Animal Biotechnology, 2021,32(2): 254-261.
ZHANG H, JIANG L, SUN D, et al. The role of miR-130a in cancer[J]. Breast Cancer, 2017,24(4): 521-527.
YANG S, GUO S, TONG S, et al. Exosomal miR-130a-3p regulates osteogenic differentiation of Human Adipose‐Derived stem cells through mediating SIRT7/Wnt/β-catenin axis[J]. Cell Proliferation, 2020,53(10): e12890.
MA X, WEI D, CHENG G, et al. Bta-miR-130a/b regulates preadipocyte differentiation by targeting PPARG and CYP2U1 in beef cattle[J]. Molecular and Cellular Probes, 2018,42: 10-17.
SEENPRACHAWONG K, TAWORNSAWUTRUK T, NANTASENAMAT C, et al. MiR-130a and miR-27b Enhance Osteogenesis in Human Bone Marrow Mesenchymal stem cells via specific down-regulation of peroxisome proliferator-activated receptor γ[J]. Frontiers in Genetics, 2018,9: 543.
LIU J, TANG T, WANG G, et al. LncRNA-H19 promotes hepatic lipogenesis by directly regulating miR-130a/PPARγ axis in non-alcoholic fatty liver disease[J]. Bioscience Reports, 2019,39(7):BSR20181722.
CERMAK N M, van LOON L J C. The use of carbohydrates during exercise as an ergogenic aid[J]. Sports Medicine, 2013,43(11): 1139-1155.
HALSETH A E, BRACY D P, WASSERMAN D H. Functional limitations to glucose uptake in muscles comprised of different fiber types[J]. American Journal of Physiology(Endocrinology and Metabolism), 2001,280(6): E994-E999.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构