1.广东药科大学生命科学与生物制药学院 / 广东省生物活性药物研究重点实验室,广东 广州510006
2.广州市微生物研究所,广东 广州 510663
李佳琪(1996年生),女;研究方向:基础医学;E-mail:940141585@qq.com
邓祖军(1979年生),男;研究方向:微生物资源学;E-mail: dengzujun@gdpu.edu.cn
纸质出版日期:2022-09-25,
网络出版日期:2022-01-21,
收稿日期:2021-09-28,
录用日期:2021-12-15
扫 描 看 全 文
李佳琪,胡海艳,姚华雄等.知母内生真菌多样性及其对浅表感染真菌的体外拮抗活性[J].中山大学学报(自然科学版),2022,61(05):84-93.
LI Jiaqi,HU Haiyan,YAO Huaxiong,et al.Species diversity of endophytic fungi from Anemarrhena asphodeloides and their antagonistic activity in vitro against superficial pathogenic fungi[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(05):84-93.
李佳琪,胡海艳,姚华雄等.知母内生真菌多样性及其对浅表感染真菌的体外拮抗活性[J].中山大学学报(自然科学版),2022,61(05):84-93. DOI: 10.13471/j.cnki.acta.snus.2021E041.
LI Jiaqi,HU Haiyan,YAO Huaxiong,et al.Species diversity of endophytic fungi from Anemarrhena asphodeloides and their antagonistic activity in vitro against superficial pathogenic fungi[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(05):84-93. DOI: 10.13471/j.cnki.acta.snus.2021E041.
分析药用植物知母
Anemarrhena asphodeloides
根、茎、叶中内生真菌的多样性及其次级代谢产物对浅表感染真菌的抑菌活性,为寻找皮肤真菌病的潜在药物奠定基础。从河北省太行山采集到5株健康的野生知母,采用组织块法分离根、茎、叶的内生真菌;结合形态学和分子生物学方法分类鉴定内生真菌;并分别采用菌丝生长抑制速率法和琼脂扩散法筛选对5种浅表感染真菌具有抑制活性的菌株。本研究从知母中共分离获得438株内生真菌,隶属于23个属。根、茎、叶的真菌定殖率分别为99.33%、74.00%和47.33%,其中根部的优势类群为镰刀菌属
Fusarium
(60.29%)和棘壳孢属
Setophoma
(33.97%);茎部的优势类群为镰刀菌属(91.50%)和粘帚霉属
Clonostachys
(7.19%);叶部的优势类群为镰刀菌属(35.53%)和链格孢属
Alternaria
(14.47%)。香农多样性指数显示,叶中的物种多样性最高,其次是根和茎。对30株代表性菌株发酵液的抑菌实验结果表明:对犬小孢子菌
Microsporum canis
、红色毛癣菌
Trichophyton rubrum
、黏膜毛孢子菌
Trichosporon mucoides
、糠秕马拉色菌
Malassezia furfur
和白色念珠菌
Candida albicans
具有抑制活性的菌株分别占总数的96.67%、100.00%、100.00%、3.33%和3.33%,其中菌株ZMR35对4种浅表感染真菌均具较强的抑制活性,菌株ZML33则对犬小孢子菌、红色毛癣菌、黏膜毛孢子菌的抑制率均高于70%,经分子鉴定两者分别属于黑团孢属
Periconia
和曲霉属
Aspergillus
。知母蕴含较为丰富的内生真菌资源,其中还有较高比例菌株的发酵产物对浅表感染真菌表现出良好的拮抗活性,这为浅表感染真菌病药物的筛选提供了潜在资源库。
The study investigated the diversity of endophytic fungi in the roots, stems and leaves of the medicinal plant
Anemarrhena asphodeloides
and the antimicrobial activity of their secondary metabolites provide references for discovering new potent antimycotics against opportunistic pathogenic yeasts and dermatophytes. Samples of roots, stems and leaves of 5 healthy wild
A. asphodeloides
plants were collected from the Taihang Mountain in Hebei Province. The endophytic fungi of
A.asphodeloides
were isolated by tissue block isolation method,and were identified by morphological and molecular biological methods.The antimicrobial activity of opportunistic pathogenic yeasts and dermatophytes of endophytic fungi were studied by the agar diffusion and mycelial growth inhibition methods, respectively. A total of 438 isolates of endophytic fungi were isolated from
A. asphodeloides
tissues,these isolates belong to 23 genera. The colonization rate of the endophytic fungi in the roots, stems and leaves were 99.33%, 74.00% and 47.33% respectively.
Fusarium
(60.29%)and
Setophoma
(33.97%)were the dominant genera in the roots,
Fusarium
(91.50%)and
Clonostachys
(7.19%)were the dominant genera in the stems, and
Fusarium
(35.53%)and
Alternaria
(14.47%)were the dominant genera in the leaves. The Shannon diversity index shows that the species diversity in leaves is the highest, followed by roots and stems. The antibacterial results of 30 representative strains by performing fermentation broth showed that: 96.77%, 100.00%, 100.00%, 3.33% and 3.33% of the isolated endophytic fungi had inhibitory activity against
Microsporum canis, Trichophyton rubrum, Trichosporon mucoides, Malassezia furfur
and
Candida albicans
,
respectively. Among them, the strain ZMR35 has a strong inhibitory activity against four kinds of superficial fungi. The inhibition rates of the fermentation broth of strain ZML33 against
Microsporum canis, Trichophyton rubrum, Trichosporon mucoides
were all higher than 70%. The results indicated that the species diversity of
A. asphodeloides
endophytic fungi was rich and the colonization of these species showed tissue specificity. Two of the strains ZMR35 and ZML33 exhibited significant inhibitory effects on a variety of superficial pathogenic fungi
in vitro
. Our results indicate that the secondary metabolites produced by the endophytic fungi of
A. asphodeloides
can be used as natural drug candidates for the treatment of superficial mycosis.
知母Anemarrhena asphodeloides内生真菌多样性浅表感染真菌抑菌活性
Anemarrhena asphodeloidesendophytic fungidiversitysuperficial pathogenic fungiantimicrobial activities
HAVLICKOVA B, CZAIKA V A, FRIEDRICH M, et al. Epidemiological trends in skin mycoses worldwide [J]. Mycoses, 2008, 51: 2-15.
KAUSHIK N, PUJALTE G G, REESE S T, et al. Superficial fungal infections [J]. Primary Care: Clinics in Office Practice,2015, 42(4): 501-516.
RAI M. Medical mycology: Current trends and future prospects [M]. Boca Raton: Crc Press, 2015.
YAMADA T, MAEDA M, ALSHAHNI M M, et al. Terbinafine resistance of Trichophyton clinical isolates caused by specific point mutations in the squalene epoxidase gene [J]. Antimicrobial Agents and Chemotherapy, 2017, 61(7): 15-17.
GOLABEK K, STRZELCZYK J, OWCZAREK A, et al. Selected mechanisms of molecular resistance of Candida albicans to azole drugs [J]. Acta Biochimica Polonica, 2015, 62(2): 247-251.
冯美茹, 施文广, 李佳琪, 等. 白花曼陀罗内生真菌多样性及抗皮肤真菌活性分析 [J]. 中国实验方剂学杂志, 2021, 27(11): 187-194.
MARTINEZ R, NILCE M, BITENCOURT T A, et al. Dermatophyte resistance to antifungal drugs: Mechanisms and prospectus [J]. Frontiers in Microbiology, 2018, 9(2): 1108-1125.
LEE H A, CASTRO A V, ABBAI R, et al. Rhizome of Anemarrhena asphodeloides as mediators of the eco-friendly synthesis of silver and gold spherical, face-centred cubic nanocrystals and its anti-migratory and cytotoxic potential in normal and cancer cell lines [J]. Artificial Cells, Nanomedicine, and Biotechnology, 2018, 46(2): 285-294.
时凯旋, 马春英. 不同栽培模式下知母种子质量及良种选育研究 [J]. 时珍国医国药, 2021, 32(4): 967-970.
吴润标, 李前勇, 李奥, 等. 山羊疣状毛癣菌鉴定与敏感天然药物的体外筛选试验 [J]. 吉林农业大学学报, 2018, 40 (3): 358-363.
LIDA Y, OH K B, SAITO M, et al. Detection of antifungal activity in Anemarrhena asphodeloides by sensitive BCT method and isolation of its active compound [J]. Journal of Agricultural and Food Chemistry, 1999, 47(2): 584-587.
巨艳红, 甄清, 李勇, 等. 知母提取物抗真菌作用实验研究 [J]. 特产研究, 2009, 31(3): 23-24+27.
张晟安, 陶春晓, 路璐, 等. 生物酶解技术对中药知母抗真菌作用的影响 [J]. 上海中医药大学学报, 2019, 33(5): 67-72.
方荣锋, 李浩浩, 张培及, 等. 产紫杉醇内生真菌TMS-26的分离和鉴定 [J]. 生物工程学报, 2017, 33(12): 1945-1954.
SINGH A, SINGH D K, KHARWAR R N, et al. Fungal endophytes as efficient sources of plant-derived bioactive compounds and their prospective applications in natural product drug discovery: Insights, avenues, and challenges [J].Microorganisms, 2021, 9(1): 197-243.
MISHRA S, SAHU P K, AGARWAL V, et al. Exploiting endophytic microbes as micro-factories for plant secondary metabolite production [J]. Appl Microbiol Biotechnol, 2021, 105(18): 6579-6596.
NICOLETTI R, FIORENTINO A. Plant bioactive metabolites and drugs produced by endophytic fungi of spermatophyta [J]. Agriculture, 2015, 5(4): 918-970.
KUMAR A, RADHAKRISHNAN E K. Microbial endophytes: Functional biology and applications [M]. UK: Woodhead Publishing, 2020.
DENG Z J, ZHANG R D, SHI Y, et al. Characterization of Cd-, Pb-, Zn-resistant endophytic Lasiodiplodia sp. MXSF31 from metal accumulating Portulaca oleracea and its potential in promoting the growth of rape in metal-contaminated soils [J]. Environmental Science and Pollution Research, 2014, 21(3): 2346-2357.
YU J, WU Y, HE Z, et al. Diversity and antifungal activity of endophytic fungi associated with Camellia oleifera [J]. Mycobiology, 2018, 46(2): 85-91.
BARNETT H L, HUNTER B B. Illustrated genera of imperfect fungi [M]. 4th ed. American: The American Phytopathological Society Press, 1998.
刘军, 刘艳明, 徐在超, 等. 檀香内生真菌多样性及其抗菌与促生特性的研究 [J]. 中国中药杂志, 2018, 43(17): 3477-3483.
谢华蓉, 徐在超, 刘军, 等. 广藿香内生真菌多样性及其对青枯菌的拮抗活性 [J]. 微生物学通报, 2017, 44(5): 1171-1181.
RÓNAVÁRI A, IGAZ N, GOPISETTY M K, et al. Biosynthesized silver and gold nanoparticles are potent antimycotics against opportunistic pathogenic yeasts and dermatophytes [J]. International Journal of Nanomedicine, 2018, 13: 695.
张政. 北极副球菌(Paracoccus sp. Arc7-R13)发酵液介导合成纳米颗粒及其特性研究 [D]. 青岛: 自然资源部第一海洋研究所, 2019.
SADEGHI F, SAMSAMPOUR D, SEYAHOOEI M A, et al. Diversity and Spatiotemporal distribution of fungal endophytes associated with Citrus reticulata cv. siyahoo [J]. Current Microbiology, 2019, 76(3): 279-289.
孙剑秋. 我国北方常见药用植物内生真菌多样性与生态分布 [D]. 哈尔滨: 东北林业大学, 2007.
PARK Y H, KIM Y, MISHRA R C, et al. Fungal endophytes inhabiting mountain-cultivated ginseng (Panax ginseng Meyer.): Diversity and biocontrol activity against ginseng pathogens [J]. Scientific Reports, 2017, 7(1):1-10.
LIU Y H, WEI Y Y, MOHAMAD O A A, et al. Diversity, community distribution and growth promotion activities of endophytes associated with halophyte Lycium ruthenicum Murr. [J]. 3 Biotech, 2019, 9(4): 1-12.
潘峰, 苏雪梅, 杨楠, 等. 一株川贝母内生真菌的分离鉴定及其产贝母类生物碱分析 [J]. 天然产物研究与开发, 2018, 30(7): 1149-1154.
邓克莉. 川贝母内生真菌介导纳米银的生物合成及其活性分析 [D]. 雅安: 四川农业大学, 2018.
樊锐锋, 王若凡, 杜艳秋, 等. 黄精根际及药用部位内生真菌群落组成和生态功能分析[J]. 广西植物, 2021, 41(5): 799-807.
ARORA P, WANI Z A, AHMAD T, et al. Community structure,spatial distribution,diversity and functional characterization of culturable endophytic fungi associated with Glycyrrhiza glabra L. [J]. Fungal Biology, 2019, 12(5): 373-383.
BAJPAI V K, KANG S C. The antidermatophytic potential of the marine isolate of Aspergillus sp. collected from south coast of Korea [J]. Korean Journal of Environmental Agriculture, 2008, 27(1): 80-85.
SHIN D S, OH M N, YANG H Cet al. Biological characterization of periconicins, bioactive secondary metabolites, produced by Periconia sp. OBW-15 [J]. Journal of Microbiology and Biotechnology, 2005, 15(1): 216-220.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构