中山大学生命科学学院,广东 广州 510275
师瑞(1990年生),男;研究方向:药理学;E-mail:shir23@mail.sysu.edu.cn
苏薇薇,教授、博士生导师;广东省中药上市后质量与药效再评价工程技术研究中心主任,现任世界中医药学会联合会网络药理学专业委员会副会长,广东省中医药学会网络药理学专业委员会主任委员。研究领域为创新药物研制、中药上市后再评价及中药国际化;发表论文400余篇(其中SCI收录150篇);出版专著23部(第一著者);获得中国发明专利授权83件,国际专利授权9件。
纸质出版日期:2022-07-25,
网络出版日期:2021-11-12,
收稿日期:2021-08-21,
录用日期:2021-10-13
扫 描 看 全 文
师瑞,王永刚,李沛波等.呼吸道张力收缩、浆液分泌的调控机制及柚皮苷在此过程中的调节作用[J].中山大学学报(自然科学版),2022,61(04):1-10.
SHI Rui,WANG Yonggang,LI Peibo,et al.Regulation mechanism of airway contraction and surface liquid secretion and regulation effect of naringin in this process[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(04):1-10.
师瑞,王永刚,李沛波等.呼吸道张力收缩、浆液分泌的调控机制及柚皮苷在此过程中的调节作用[J].中山大学学报(自然科学版),2022,61(04):1-10. DOI: 10.13471/j.cnki.acta.snus.2021E032.
SHI Rui,WANG Yonggang,LI Peibo,et al.Regulation mechanism of airway contraction and surface liquid secretion and regulation effect of naringin in this process[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(04):1-10. DOI: 10.13471/j.cnki.acta.snus.2021E032.
综述了呼吸道平滑肌张力收缩调控机制、咳嗽变异性哮喘疾病及治疗研究进展、呼吸道上皮浆液分泌调控机制,以及柚皮苷对呼吸道张力收缩及浆液分泌的调控机制研究进展,为其临床应用提供依据。
This article reviews the regulation mechanism of airway smooth muscle contraction, the progress on the research and treatment of cough variant asthma, the regulation mechanism of airway epithelial liquid secretion, and the progress on the effects of naringin on the airway contraction and surface liquid secretion, highlighting the potential of naringin for its clinical application.
柚皮苷呼吸道张力收缩浆液分泌调控机制
naringinairwaycontractionsurface liquid secretionregulation mechanism
JAMES A, CARROLL N. Airway smooth muscle in health and disease; methods of measurement and relation to function[J]. European Respiratory Journal, 2000, 15: 782-789.
JANSSEN L J. Ionic mechanisms and Ca2+ regulation in airway smooth muscle contraction: do the data contradict dogma?[J]. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2002, 282: L1161-L1178.
SANDERSON M J, DELMOTTE P, BAI Y, et al. Regulation of airway smooth muscle cell contractility by Ca2+ signaling and sensitivity[J]. Proceedings of the American Thoracic Society, 2008, 5: 23-31.
WEBB R C. Smooth muscle contraction and relaxation[J]. APS Refresher Course Report, 2003, 27(4): 201-206.
FOLKERTS G, NIJKAMP F P. Airway epithelium: more than just a barrier[J]. Trends in Pharmacological Sciences, 1998, 8: 334-341.
INSUELA D B R, DALEPRANE J B, COELHO L P, et al. Glucagon induces airway smooth muscle relaxation by nitric oxide and prostaglandin E2[J]. Journal of Endocrinology, 2015, 225: 205- 217.
SEMENOV I, WANG B, HERLIHY J T, et al. BK channel beta1-subunit regulation of calcium handling and constriction in tracheal smooth muscle[J]. American Journal of Physiology- Lung Cellular and Molecular Physiology, 2006, 291: L802-L810.
SAVOIA C P, LIU Q H, ZHENG Y M, et al. Calcineurin upregulates local Ca2+ signaling through ryanodine receptor-1 in airway smooth muscle cells[J]. American Journal of Physiology- Lung Cellular and Molecular Physiology, 2014, 307: L781-L790.
ROTHBERG B S. The BK channel: a vital link between cellular calcium and electrical signaling[J]. Protein & Cell, 2012, 3: 883-892.
TINKER A, AZIZ Q, THOMAS A. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system[J]. British Journal of Pharmacology, 2014, 171: 12-23.
CLARK R, PROKS P. ATP-sensitive potassium channels in health and disease[J]. Advances in Experimental Medicine and Biology, 2010, 654: 165-192.
SHEND K Z, LAGRUTTA A, DAVIES N W, et al. Tetraethylammonium block of Slowpoke calcium-activated potassium channels expressed in Xenopus oocytes: Evidence for tetrameric channel formation[J]. European Journal of Physiology, 1994, 426(5): 440-445.
WALLNER M, MEERA P, TORO L. Determinant for beta-subunit regulation in high-conductance voltage-activated and Ca2+-sensitive K+ channels: An additional transmembrane region at the N terminus[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(25): 14922-14927.
MEERA P, WALLNER M, SONG M, et al. Large conductance voltage- and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0-S6), and extracellular N terminus, and an intracellular (S9-S10) C terminus[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(25): 14066-14071.
MORROW J P, ZAKHAROV S I, LIU G, et al. Defining the BK channel domains required for beta 1-subunit modulation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(13): 5096-5101.
LIU G, ZAKHAROV S I, YANG L, et al. Locations of the beta 1 transmembrane helices in the BK potassium channel[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(31): 10727-10732.
KOVAL O M, FAN Y, ROTHBERG B S. A role for the S0 transmembrane segment in voltage-dependent gating of BK channels[J]. Journal of General Physiology, 2007, 129(3): 209-220.
PANTAZI A, KOHANTEB A P, OLCESE R. Relative motion of transmembrane segments S0 and S4 during voltage sensor activation in the human BKCa channel[J]. Journal of General Physiology, 2010, 136(6): 645-657.
WEBB T I, KSHATRI A S, LARGE R J, et al. Molecular mechanisms underlying the effect of the novel BK channel opener GoSlo: Involvement of the S4/S5 linker and the S6 segment[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(7): 2064-2069.
ZHANG G, YANG H, LIANG H, et al. A charged residue in S4 regulates coupling among the activation gate, voltage, and Ca2+ sensors in BK channels[J]. Journal of Neuroscience, 2014, 34(37): 12280-12288.
ZHOU Y, XIA X, LINGLE C J. Cadmium-cysteine coordination in the BK inner pore region and its structural and functional implications[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(16): 5237-5242.
SCHREIBER M, SALKOFF L. A novel calcium-sensing domain in the BK channel[J]. Biophysical Journal, 1997, 73(3): 1355-1363.
SCHREIBER M, YUAN A, SALKOFF L. Transplantable sites confer calcium sensitivity to BK channels[J]. Nature Neuroscience, 1999, 2(5): 416-421.
JIANG Y, PICO A, CADENE M, et al. Structure of the RCK domain from the E.coli K+ channel and demonstration of its presence in the human BK channel[J]. Neuron, 2001, 29(3): 593- 601.
BAO L, RAPIN A M, HOLMSTRAND E C, et al. Elimination of the BKCa channel's high-affinity Ca2+ sensitivity[J]. Journal of General Physiology, 2002, 120(2): 173-189.
NIMIGEAN C M, MAGLEBY K L. The beta subunit increases the Ca2+ sensitivity of large conductance Ca2+-activated potassium channels by retaining the gating in the bursting states[J]. Journal of General Physiology, 1999, 113(3): 425-439.
BRENNER R, PERÉZ G J, BONEV A D, et al. Vasoregulation by the beta 1 subunit of the calcium- activated potassium channel[J]. Nature, 2000, 407(6806): 870-876.
COX D H, ALDRICH R W. Role of the beta 1 subunit in large-conductance Ca2+-activated K+ channel gating energetics-mechanisms of enhanced Ca2+ sensitivity[J]. Journal of General Physiology, 2000, 116(3): 411-432.
NIMIGEAN C M, MAGLEBY K L. Functional coupling of the β1 subunit to the large conductance Ca2+-activated K+ channel in the absence of Ca2+[J]. Journal of General Physiology, 2000, 115(6): 719-734.
PATTERSON A J, HENRIE-OLSON J, BRENNER R. Vasoregulation at the molecular level: A role for the beta 1 subunit of the calcium-activated potassium (BK) channel[J]. Trends in Cardiovascular Medicine, 2002, 12: 78-82.
ZHU Y, BIAN Z, LU P, et al. Abnormal vascular function and hypertension in mice deficient in estrogen receptor beta[J]. Science, 2002, 295(5554): 505-508.
BAO L, COX D H. Gating and ionic currents reveal how the BKCa channel's Ca2+ sensitivity is enhanced by its beta 1 subunit[J]. Journal of General Physiology, 2005, 126(4): 393-412.
MOCZYDLOWSKI E, LATORRE R. Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage-dependent Ca2+ binding reactions[J].The Journal of General Physiology,1983, 82(4): 511-542.
ROTHBERG B S, MAGLEBY K L. Voltage and Ca2+ activation of single large-conductance Ca2+-activated K+ channels described by a two-tiered allosteric gating mechanism[J]. Journal of General Physiology, 2000, 116(1): 75-99.
HORRIGAN F T, ALDRICH R W. Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels[J]. Journal of General Physiology, 2002, 120(4): 267-305.
MEREDITH A L, THORNELOE K S, WERNER M E, et al. Overactive bladder and incontinence in the absence of the BK large conductance Ca2+-activated K+ channel[J]. Journal of Biological Chemistry, 2004, 279(35): 36746-36752.
BRENNER R, CHEN Q H, VILAYTHONG A, et al. BK channel beta 4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures[J]. Nature Neuroscience, 2005, 8(12): 1752-1759.
WERNER M E, ZVARA P, MEREDITH A L, et al. Erectile dysfunction in mice lacking the large-conductance calcium-activated potassium (BK) channel[J]. Journal of Physiology- London, 2005, 567(2): 545-556.
IMLACH W L, FINCH S C, DUNLOP J, et al. The molecular mechanism of "Ryegrass Staggers" a neurological disorder of K+ channels[J]. Journal of Pharmacology and Experimental Therapeutics, 2008, 327(3): 657-664.
SEIBOLD M A, WANG B, ENG C, et al. An African-specific functional polymorphism in KCNMB1 shows sex-specific association with asthma severity[J]. Human Molecular Genetics, 2008, 17(17): 2681-2690.
WANG B, ROTHBERG B S, BRENNER R. Mechanism of increased BK channel activation from a channel mutation that causes epilepsy[J]. Journal of General Physiology, 2009, 133(3): 283-294.
SEMENOV I, WANG B, HERLIHY J T, et al. BK channel beta1 subunits regulate airway contraction secondary to M2 muscarinic acetylcholine receptor mediated depolarization[J]. Journal of Physiology-London, 2011, 589(7): 1803-1817.
TURCOTTE S E, LOUGHEED M D. Cough in asthma[J]. Curr Opin Pharmacol, 2011, 11: 231-237.
MINOGUCHI K, ODA N, ADACHI M. T helper 2 lymphocyte responses and airway inflammation in atopic patients with cough variant asthma and classic asthma[J]. Int Arch Allergy Immunol, 2001, 124: 318-320.
de DIEGO A, MARTINEZ E, PERPINA M, et al. Airway inflammation and cough sensitivity in cough-variant asthma[J]. Allergy, 2005, 60: 1407-1411.
NIIMI A. Cough and Asthma[J]. Curr Respir Med Rev, 2011, 1: 47-54.
NIIMI A. Cough Variant Asthma [J]. Clinical Pulmonary Medicine, 2008, 15: 189-196.
MAGNI C, CHELLINI E, ZANASI A. Cough variant asthma and atopic cough[J]. Multidiscip Respir Med, 2010, 5: 99-103.
BRIGHTLING C E. Cough due to asthma and nonasthmatic eosinophilic bronchitis[J]. Lung, 2010, 188: 13-17.
ANTONIU S A, MIHAESCU T, DONNER C F. Pharmacotherapy of cough-variant asthma[J]. Expert Opin Pharmaco, 2007, 8: 3021-3028.
ABOUZGHEIB W, PRATTER M R, BARTTER T. Cough and asthma[J]. Curr Opin Pulm Med, 2007, 13: 44-48.
BENOIT C, RENAUDON B, SALVAIL D, et al. EETs relax airway smooth muscle via an EpDHF effect: BK(Ca) channel activation and hyperpolarization[J]. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2001, 280: L965-L973.
KOTLIKOFF M I, KAMM K E. Molecular mechanisms of beta-adrenergic relaxation of airway smooth muscle[J]. Annu Rev Physiol, 1996, 58: 115-141.
DERICHS N, JIN B J, SONG Y, et al. Hyperviscous airway periciliary and mucous liquid layers in cystic fibrosis measured by confocal fluorescence photobleaching[J]. FASEB J, 2011, 25: 2325-2332.
MORAN O, ZEGARRA-MORAN O. On the measurement of the functional properties of the CFTR[J]. Journal of Cystic Fibrosis, 2008, 7(6): 483-494.
ROWE S M, MILLER S, SORSCHER E J. Cystic fibrosis[J]. New Engl J Med, 2005, 352:1992- 2001.
SHEPPARD D N, WELSH M J. Structure and function of the CFTR chloride channel[J]. Physiological Reviews, 1999, 79(1 Suppl): S23-S45.
SKOWRON-ZWARG M, BOLAND S, CARUSO N, et al. Interleukin-13 interferes with CFTR and AQP5 expression and localization during human airway epithelial cell differentiation[J]. Experimental Cell Research, 2007, 313(12): 2695-2702.
THIAGARAJAH J R, VERKMAN A S. CFTR pharmacology and its role in intestinal fluid secretion[J].Current Opinion in Pharmacology, 2003, 3(6): 594-599.
RAMACHANDRAN S, KARP P H, JIANG P, et al. A microRNA network regulates expression and biosynthesis of wild-type and ΔF508 mutant cystic fibrosis transmembrane conductance regulator[J]. P Natl Acad Sci USA, 2012, 109: 13362-13367.
BROUILLARD F, BOUTHIER M, LECLERC T, et al. NFƘB mediates up-regulation of CFTR gene expression in calu-3 cells by interleukin-1β[J]. Biol Chem, 2001, 276: 9486-9491.
KULKA M, DERY R, NAHIRNEY D, et al. Differential regulation of cystic fibrosis transmembrane conductance regulator by interferon γ in mast cells and epithelial cells[J]. J Pharmacol Exp Ther, 2005, 315: 563-570.
de LEMOS BARBOSA C M, SOUZA-MENEZES J, AMARAL A G, et al. Regulation of CFTR expression and arginine vasopressin activity are dependent on polycystin-1 in kidney-derived Cells[J].Cell Physiol Biochem, 2016, 38: 28-39.
ROUX J, CARLES M, KOH H, et al. Transforming growth factor 1 inhibits cystic fibrosis transmembrane conductance regulator-dependent cAMP-stimulated alveolar epithelial fluid transport via a phosphatidylinositol 3-Kinase-dependent mechanism[J]. J Biol Chem, 2010, 285: 4278-4290.
HSIEH A C, TRUITT M L, RUGGERO D. Oncogenic AKT ivation of translation as a therapeutic target[J]. Br J Cancer, 2011, 105: 329-336.
HE Z, GAO Y, DENG Y, et al. Lipopolysaccharide induces lung fibroblast proliferation through Toll-like receptor 4 signaling and the phosphoinositide3-kinase-Akt pathway[J]. PLoS One,2012;7:e35926.
YANG Y, CHENG Y, LIAN Q Q, et al. Contribution of CFTR to alveolar fluid clearance by lipoxin A4 via PI3K/Akt pathway in LPS-induced acute lung injury[J]. Mediators Inflamm, 2013, 2013: 862628.
RAMSEY B W, DAVIEs J, McELVANEY N G, et al. A CFTR potentiator in patients with Cystic fibrosis and the G551D mutation[J]. New Engl J Med, 2011, 365: 1663-1672.
ZHAO Y, JOSHI-BARVE S, BARVE S, et al. Eicosapentaenoic acid prevents LPS-induced TNF-α expression by preventing NF-κB activation[J]. Journal of the American College of Nutrition, 2004, 23(1): 71-78.
SHEN H, YOSHIDA H, YAN F, et al. Synergistic induction of MUC5AC mucin by nontypeable Haemophilus influenzae and Streptococcus pneumoniae[J]. Biochemical and Biophysical Research Communications, 2008, 365(4): 795-800.
KAN H, LONDON S J, CHEN G, et al. Differentiating the effects of fine and coarse particles on daily mortality in Shanghai[J]. Environ Int, 2007, 33(3): 376-384.
WICHMANN H E. Diesel exhaust particles[J]. Inhal Toxicol, 2007, 19(Suppl.1): 241-244.
LI P, XIN J, WANG Y, et al. The acute effects of fine particles on respiratory mortality and morbidity in Beijing, 2004-2009[J]. Environ Sci Pollut Res, 2013, 20(9): 6433-6444.
VINIKOOR-IMLER L C, DAVIS J A, LUBEN T J. An ecologic analysis of county-level PM2.5 concentrations and lung cancer incidence and mortality[J]. Int J Environ Res Public Health, 2011, 8(6): 1865-1871.
BRUNEKREEF B, HOLGATE S T. Air pollution and health[J]. Lancet, 2002, 360, 1233-1242.
APTE J S, MARSHALL J D, COHEN A J, et al. Addressing global mortality from ambient PM2.5[J]. Environ Sci Technol, 2015, 49(13): 8057-8066.
LIM S S, VOS T, FLAXMAN A D, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010[J]. Lancet, 2012, 380(9859): 2224-2260.
YANG G, WANG Y, ZENG Y, et al. Rapid health transition in China, 1990-2010: findings from the Global Burden of Disease Study 2010[J]. Lancet, 2013, 381(9882): 1987-2015.
RIVA D R, MAGALHÃES C B, LOPES A A, et al. Low dose of fine particulate matter (PM2.5) can induce acute oxidative stress, inflammation and pulmonary impairment in healthy mice[J]. Inhal Toxicol, 2011, 23(5): 257-267.
UPADHYAY D, PANDURI V, GHIO A, et al. Particulate matter induces alveolar epithelial cell DNA damage and apoptosis: role of free radicals and the mitochondria[J]. Am J Respir Cell Mol Biol, 2003, 29(2): 180-187.
WU J, SHI Y, ASWETO C O, et al. Fine particle matters induce DNA damage and G2/M cell cycle arrest in human bronchial epithelial BEAS-2B cells[J]. Environ Sci Pollut Res Int, 2017, 24(32): 25071-25081.
YANG J, HUO T, ZHANG X, et al. Oxidative stress and cell cycle arrest induced by short-term exposure to dustfall PM2.5 in A549 cells[J]. Environ Sci Pollut Res Int, 2018,25(23): 22408-22419.
LI N, HAO M, PHALEN R F, et al. Particulate air pollutants and asthma. A paradigm for the role of oxidative stress in PM-induced adverse health effects[J]. Clin Immunol, 2003, 109(3), 250-265.
PALLESCHI S, ROSSI B, ARMIENTO G, et al. Toxicity of the readily leachable fraction of urban PM2.5 to human lung epithelial cells: Role of soluble metals[J]. Chemosphere, 2018, 196: 35-44.
COHEN R A, PETSONK E L, ROSE C, et al. Lung pathology in U.S. coal workers with rapidly progressive pneumoconiosis implicates silica and silicates[J]. Am J Resp Crit Care Med, 2016, 193(6): 673-680.
MAHDAVINIA M, KESHAVARZIAN A, TOBIN M C, et al. A comprehensive review of the nasal microbiome in chronic rhinosinusitis (CRS) [J]. Clin Exp Allergy, 2016, 46(1):21-41.
AUTIO T J, TAPIAINEN T, KOSKENKORVA T, et al. The role of microbes in the pathogenesis of acute rhinosinusitis in young adults[J]. Laryngoscope, 2015, 125(1), 1-7.
BARI M R, HIRON M M, ZAMAN S M, et al. Microbes responsible for acute exacerbation of COPD[J]. Mymensingh Medical Journal, 2010, 19(4), 576-85.
LIU H, FAN X, WANG N, et al. Exacerbating effects of PM2.5 in OVA-sensitized and challenged mice and the expression of TRPA1 and TRPV1 proteins in lungs[J]. J Asthma, 2017, 54(8): 807-817.
PARK I H, KANG J H, KIM J A, et al. Diesel exhaust particles enhance MUC4 expression in NCI-H292 cells and nasal epithelial cells via the p38/CREB pathway[J].Int Arch Allergy Immunol,2016,3/4(171): 209-216.
HUANG L, PU J, HE F, et al. Positive feedback of the amphiregulin-EGFR-ERK pathway mediates PM2.5 from wood smoke-induced MUC5AC expression in epithelial cells[J]. Sci Rep, 2017,7(1): 11084.
WANG H, SONG L, JU W, et al. The acute airway inflammation induced by PM2.5 exposure and the treatment of essential oils in Balb/c mice[J]. Sci Rep, 2017, 7: 44256.
ICHINOSE T, TAKANO H, SADAKANE K, et al. Mouse strain differences in eosinophilic airway inflammation caused by intratracheal instillation of mite allergen and diesel exhaust particles[J]. J Appl Toxicol, 2004, 24(1): 69-76.
ROBERTSON S, GRAY G A, DUFFIN R, et al. Diesel exhaust particulate induces pulmonary and systemic inflammation in rats without impairing endothelial function ex vivo or in vivo[J]. Part Fibre Toxicol, 2012, 9: 9.
SKOVMAND A, DAMIAO G A C, KOPONEN I K, et al. Lung inflammation and genotoxicity in mice lungs after pulmonary exposure to candle light combustion particles[J]. Toxicol Lett, 2017, 276: 31-38.
DENG X, ZHANG F, RUI W, et al. PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells[J]. Toxicol in Vitro, 2013, 27(6): 1762-1770.
GAO S, LI P B, YANG H L, et al. Antitussive effect of naringin on experimentally induced cough in Guinea pigs[J]. Planta Med, 2011, 77(1): 16-21.
LUO Y L, ZHANG C C, LI P B, et al. Naringin attenuates enhanced cough, airway hyperresponsiveness and airway inflammation in a guinea pig model of chronic bronchitis induced by cigarette smoke[J]. Int Immunopharmacol, 2012, 13(3): 301- 307.
JIAO H Y, SU W W, LI P B, et al. Therapeutic effects of naringin in a guinea pig model of ovalbumin-induced cough-variant asthma[J]. Pulm Pharmacol Ther, 2015, 33: 59-65.
NIE Y C, WU H, LI P B, et al.Naringin attenuates EGF-induced MUC5AC secretion in A549 cells by suppressing the cooperative activities of MAPKs-AP-1 and IKKs-IkappaB- NF-kappaB signaling pathways[J]. Eur J Pharmacol, 2012, 690(1/2/3): 207-213.
LIN B Q, LI P B, WANG Y G, et al. The expectorant activity of naringenin[J]. Pulm Pharmacol Ther, 2008, 21(2): 259-263.
SHI R, XIAO Z T, ZHENG Y J, et al. Naringenin regulates CFTR activation and expression in airway epithelial cells[J]. Cell Physiol Biochem, 2017, 44(3): 1146-1160.
LIU Y, SU W W, WANG S, et al. Naringin inhibits chemokine production in an LPS‑induced RAW 264.7 macrophage cell line[J]. Mol Med Rep, 2012, 6(6): 1343-1350.
LIU Y, WU H, NIE Y C, et al. Naringin attenuates acute lung injury in LPS-treated mice by inhibiting NF-κB pathway[J]. Int Immunopharmacol, 2011, 11(10): 1606-1612.
NIE Y C, WU H, LI P B, et al. Anti-inflammatory effects of naringin in chronic pulmonary neutrophilic inflammation in cigarette smoke-exposed rats[J]. J Med Food, 2012, 15(10): 894-900.
CHEN Y, NIE Y C, LUO Y L, et al. Protective effects of naringin against paraquat-induced acute lung injury and pulmonary fibrosis in mice[J]. Food Chem Toxicol, 2013, 58: 133-140.
CHEN Y, WU H, NIE Y C, et al. Mucoactive effects of naringin in lipopolysaccharide-induced acute lung injury mice and beagle dogs[J]. Environ Toxicol Pharmacol, 2014, 38(1): 279-287.
李泮霖, 廖弈秋, 刘宏, 等. 采用iTRAQ技术研究柚皮苷对烟熏所致小鼠急性肺部炎症相关蛋白表达的影响[J]. 中山大学学报(自然科学版), 2017, 56(4): 102-110.
YANG Z, PAN A, ZUO W, et al. Relaxant effect of flavonoid naringenin on contractile activity of rat colonic smooth muscle[J]. J Ethnopharmacol, 2014, 155: 1177-1183.
SAPONARA S, TESTAI L, IOZZI D, et al. (+/-)-Naringenin as large conductance Ca2+-activated K+ (BKCa) channel opener in vascular smooth muscle cells[J]. Brit J Pharmacol, 2006, 149: 1013-1021.
HSU H T, TSENG Y T, LO Y C, et al. Ability of naringenin, a bioflavonoid, to activate M-type potassium current in motor neuron-like cells and to increase BKCa-channel activity in HEK293T cells transfected with α-hSlo subunit[J]. BMC Neurosci, 2014, 15: 135.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构