1.华南农业大学海洋学院 / 海洋生物资源保护与利用粤港联合实验室,广东 广州 510642
2.新疆畜牧科学院兽医研究所 / 新疆畜牧科学院动物临床医学研究中心,新疆 乌鲁木齐 830000
3.中山大学水生经济动物研究所 / 广东省水生经济动物良种繁育重点实验室,广东 广州 510275
4.华南农业大学中山创新中心,广东 中山 528400
杨炎(1996年生),女;研究方向:水生经济动物分子内分泌学;E-mail:20182067006@stu.scau.edu.cn
杨慧荣(1977年生),女;研究方向:水生经济动物分子内分泌学、渔业种质资源和环境关系研究;E-mail:hry@scau.edu.cn
纸质出版日期:2022-07-25,
网络出版日期:2021-12-13,
收稿日期:2021-07-22,
录用日期:2021-08-23
扫 描 看 全 文
杨炎,夏俊,王庆等.斜带石斑鱼mstn对其肌肉细胞增殖分化及相关基因表达的影响[J].中山大学学报(自然科学版),2022,61(04):41-48.
YANG Yan,XIA Jun,WANG Qing,et al.Effects of mstn on proliferation and differentiation of muscle cells and the expression of related genes in Epinephelus coioides[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(04):41-48.
杨炎,夏俊,王庆等.斜带石斑鱼mstn对其肌肉细胞增殖分化及相关基因表达的影响[J].中山大学学报(自然科学版),2022,61(04):41-48. DOI: 10.13471/j.cnki.acta.snus.2021E031.
YANG Yan,XIA Jun,WANG Qing,et al.Effects of mstn on proliferation and differentiation of muscle cells and the expression of related genes in Epinephelus coioides[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(04):41-48. DOI: 10.13471/j.cnki.acta.snus.2021E031.
斜带石斑鱼
Epinephelus coioides
是具有较高经济价值的海水鱼,如何促进石斑鱼生产性状改良一直是科学研究的重点之一。肌肉生长抑制素(mstn,myostatin)是调节肌肉生长的重要转化因子。本研究中,Mstn的亚细胞定位表明Mstn在斜带石斑鱼细胞质中呈点状分布。利用酶标仪测定被Mstn重组蛋白刺激肌肉原代细胞1~5 d后的
A
值,发现实验组细胞生长明显减缓,随着处理时间的增加,细胞活性差异进一步扩大。利用流式细胞仪测定被Mstn重组蛋白刺激的肌肉原代细胞细胞周期,发现实验组细胞周期受阻。用Mstn重组蛋白对肌肉原代细胞进行刺激,通过RT-qPCR检测Mstn重组蛋白对
mstn
信号通路及下游相关基因的影响,结果表明随着处理浓度的升高,
p21
、
smad3
和
mrf4
mRNA的表达量也逐渐而上升,其中,
smad3
和
mrf4
表达量的上升不存在显著性差异;当处理浓度为100和1 000 nmol/L时,
p21
存在显著性差异;随着处理浓度的升高,
myod
和
myog
mRNA的表达量均下降,但
myod
mRNA下降趋势不显著,
myog
mRNA显著下降,当处理浓度为100和1 000 nmol/L时存在显著性差异。本研究揭示了Mstn定位于斜带石斑鱼GS细胞质;Mstn重组蛋白上调
smad3
、
mrf4
的表达,下调
myod
、
myog
的表达,来促进细胞的分化;同时Mstn重组蛋白能上调
p21
的表达,抑制细胞的增殖。本研究验证了Mstn在肌肉发育过程中的生物学功能,为后续深入开展
mstn
对鱼类肌肉发育的影响研究奠定了基础。
Epinephelus coioides
is a marine fish with high economic value. How to improve the production characteristics of
E. coioides
has always been one of the focuses of scientific research. Myostatin(mstn) is an important transforming factor in regulating muscle growth. In this study, we investigated the effects of
mstn
on proliferation and differentiation of muscle cells and its related genes expression. The subcellular localization of Mstn showed that Mstn distributed in the cytoplasm of
E. coioides
. The
A
value of muscle primary cells stimulated by Mstn recombinant protein for 1-5 days was measured by enzyme labeling instrument. It was found that the growth of cells in the experimental group slowed down significantly, and the difference of cell activity further expanded with the increase of treatment time. Primary muscle cells were stimulated with Mstn recombinant protein. The effects of Mstn recombinant protein on
mstn
signal pathway and downstream related genes were detected by RT-qPCR. The results showed that the expression of
p21
,
smad3
and
mrf4
mRNA increased gradually with the increase of treatment concentration, and there was no significant difference in the expression of
smad3
and
mrf4
; When the treatment concentrations were 100 and 1 000 nmol/L, there was a significant difference in p21; With the increase of treatment concentration, the expression of
myod
and
myog
mRNA decreased, but the downward trend of
myod
mRNA was not significant.
Myog
mRNA decreased significantly, and there was a significant difference when the treatment concentration was 100 and 1 000 nmol/L. This study revealed that Mstn is localized in the cytoplasm of
E. coioides
GS; the recombinant Mstn protein up-regulates the expression of
smad3
and
mrf4
, and down-regulates the expression of
myod
and
myog
to promote cell differentiation; at the same time, the recombinant Mstn protein can up-regulate the expression of
p21
and inhibit the cell proliferation. The study verified the biological function of Mstn in the process of muscle development, and provided a theoretical foundation for the subsequent in-depth study of the effect of
mstn
on fish muscle development.
mstn斜带石斑鱼Epinephelus coioides肌肉表达分析
mstnEpinephelus coioidesmuscleexpression analysis
LEE S J, McPHERRON A C. Myostatin and the control of skeletal muscle mass [J]. Current Opinion in Genetics & Development, 1999, 9(5): 604-607.
McPHERRON A C, LAWLER A M, LEE S J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member [J]. Nature, 1997, 387(6628): 83-90.
LEE J, KIM D H, LEE K. Muscle hyperplasia in Japanese quail by single amino acid deletion in MSTN propeptide [J]. International Journal of Molecular Sciences, 2020, 21(4): 1504.
RIOS R, CARNEIRO I, ARCE V M, et al. Myostatin is an inhibitor of myogenic differentiation [J]. American Journal of Physiology Cell Physiology, 2002, 282(5): 993-999.
ACOSTA J, CARPIO Y, BORROTO I, et al. Myostatin gene silenced by RNAi show a zebrafish giant phenotype [J]. Journal of Biotechnology, 2005, 119(4): 324-331.
de SANTIS C, JERRY D R. Differential tissue-regulation of myostatin genes in the teleost fish Lates calcarifer in response to fasting. Evidence for functional differentiation [J]. Molecular and Cellular Endocrinology, 2011, 335(2): 158-165.
SHENG Y, SUN Y, ZHANG X, et al. Characterization of two myostatin genes in pufferfish Takifugu bimaculatus: Sequence, genomic structure, and expression [J]. PeerJ Journals, 2020, 8: e9655.
SEGEV-HADAR A, ALUPO G, TAL K, et al. Identification and characterization of a non-muscular myostatin in the Nile Tilapia [J]. Frontiers in Endocrinology, 2020, 11: 94.
THOMAS M, LANGLEY B, BERRY C, et al. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation [J]. The Journal of Biological Chemistry, 2000, 275(51): 40235-40243.
MANCEAU M, GROS J, SAVAGE K, et al. Myostatin promotes the terminal differentiation of embryonic muscle progenitors [J]. Genes & Development, 2008, 22(5): 668-681.
ZHANG P, WONG C, LIU D, et al. p21(CIP1) and p57(KIP2) control muscle differentiation at the myogenin step [J]. Genes & Development, 1999, 13(2): 213-224.
PARKER S B, EICHELE G, ZHANG P, et al. p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells [J]. Science, 1995, 267(5200): 1024-1027.
LEE S J, McPHERRON A C. Regulation of myostatin activity and muscle growth [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(16): 9306-9311.
REBBAPRAGADA A, BENCHABANE H, WRANA J L, et al. Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis [J]. Molecular and Cellular Biology, 2003, 23(20): 7230-7242.
ZHU X, TOPOUZIS S, LIANG L F, et al. Myostatin signaling through Smad2, Smad3 and Smad4 is regulated by the inhibitory Smad7 by a negative feedback mechanism [J]. Cytokine, 2004, 26(6): 262-272.
McCROSKERY S, THOMAS M, MAXWELL L, et al. Myostatin negatively regulates satellite cell activation and self-renewal [J]. The Journal of Cell Biology, 2003, 162(6): 1135-1147.
TAYLOR W E, BHASIN S, ARTAZA J, et al. Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells [J]. American Journal of Physiology Endocrinology and Metabolism, 2001, 280(2): E221-228.
SALABI F, NAZARI M, CHEN Q, et al. Myostatin knockout using zinc-finger nucleases promotes proliferation of ovine primary satellite cells in vitro [J]. Journal of Biotechnology, 2014, 192: 268-280.
LANGLEY B, THOMAS M, BISHOP A, et al. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression [J]. The Journal of Biological Chemistry, 2002, 277(51): 49831-49840.
JOULIA D, BERNARDI H, GARANDEL V, et al. Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin [J]. Experimental Cell Research, 2003, 286(2): 263-275.
KUMAR R, SINGH S P, KUMARI P, et al. Small interfering RNA (siRNA)-mediated knockdown of myostatin influences the expression of myogenic regulatory factors in caprine foetal myoblasts [J]. Applied Biochemistry and Biotechnology, 2014, 172(3): 1714-1724.
DANKBAR B, FENNEN M, BRUNERT D, et al. Myostatin is a direct regulator of osteoclast differentiation and its inhibition reduces inflammatory joint destruction in mice [J]. Nature Medicine, 2015, 21(9): 1085-1090.
KONG J, YAN Y, LU X, et al. Integrative phenotypic and gene expression data identify myostatin as a muscle growth inhibitor in Chinese shrimp Fenneropenaeus chinensis [J]. Scientific Reports, 2020, 10(1): 5985.
GENG J, LIU G, PENG F, et al. Decorin promotes myogenic differentiation and mdx mice therapeutic effects after transplantation of rat adipose-derived stem cells [J]. Cytotherapy, 2012, 14(7): 877-886.
WAGNER K R, LIU X, CHANG X, et al. Muscle regeneration in the prolonged absence of myostatin [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(7): 2519-2524.
王红娜, 孙洪兴, 张英杰, 等. 干扰MSTN对绵羊成肌细胞增殖分化及相关基因表达的影响 [J]. 畜牧兽医学报, 2018, 49(1): 46-54.
朱菲菲, 张俊星, 张林林, 等. 干扰MSTN对牛骨骼肌卫星细胞增殖分化的影响 [J]. 中国畜牧兽医, 2020, 47(2): 479-487.
金鑫燕. 山羊肌生成抑制素MSTN基因的克隆及生物信息学分析 [J]. 中国畜牧兽医, 2011, 38(9): 111-114.
THIES R S, CHEN T, DAVIES M V, et al. GDF-8 propeptide binds to GDF-8 and antagonizes biological activity by inhibiting GDF-8 receptor binding [J]. Growth Factors, 2001, 18(4): 251-259.
GE X, McFARLANE C, VAJJALA A, et al. Smad3 signaling is required for satellite cell function and myogenic differentiation of myoblasts [J]. Cell Research, 2011, 21(11): 1591-1604.
LIU D, BLACK B L, DERYNCK R. TGF-beta inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3 [J]. Genes & Development, 2001, 15(22): 2950-2966.
RUDNICKI M A, BRAUN T, HINUMA S, et al. Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development [J]. Cell, 1992, 71(3): 383-390.
RUDNICKI M A, SCHNEGELSBERG P N, STEAD R H, et al. MyoD or Myf-5 is required for the formation of skeletal muscle [J]. Cell, 1993, 75(7): 1351-1359.
CHOI D H, YANG J, KIM Y S. Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway [J]. Biochemistry and Biophysics Reports, 2019, 17: 182-190.
KARIMIAN A, AHMADI Y, YOUSEFI B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage [J]. DNA Repair, 2016, 42: 63-71.
LI R, WAGA S, HANNON G J, et al. Differential effects by the p21 CDK inhibitor on PCNA-dependent DNA replication and repair [J]. Nature, 1994, 371(6497): 534-537.
MANSILLA S F, VEGA M, CALZETTA N L, et al. CDK-Independent and PCNA-Dependent Functions of p21 in DNA Replication [J]. Genes, 2020, 11(6): 593.
GE L, DONG X, GONG X, et al. Mutation in myostatin 3'UTR promotes C2C12 myoblast proliferation and differentiation by blocking the translation of MSTN [J]. International Journal of Biological Macromolecules, 2020, 154: 634-643.
KUMAR R, SINGH S P, MITRA A. Short-hairpin mediated myostatin knockdown resulted in altered expression of myogenic regulatory factors with enhanced myoblast proliferation in fetal myoblast cells of goats [J]. Animal Biotechnology, 2018, 29(1): 59-67.
ZHANG J, LIU J, YANG W, et al. Comparison of gene editing efficiencies of CRISPR/Cas9 and TALEN for generation of MSTN knock-out cashmere goats [J]. Theriogenology, 2019, 132: 1-11.
孙顺昌, 彭运生, 贺敬波, 等. siRNA阻断鼠成肌细胞myostatin表达对细胞增殖及分化能力的影响 [J]. 基础医学与临床, 2011, 31(2): 187-191.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构