广东省热带亚热带植物资源重点实验室 / 中山大学生态学院,广东 广州 510275
苗毅博(1988年生),男;研究方向:植物与微生物互作;E-mail: miaoyibo@yeah.net
杨傲(1999年生),男;研究方向:植物胁迫生理与生态;E-mail: ya1193065215@163.com
刘蔚秋(1970年生),女;研究方向:植物生理生态学和环境修复;E-mail: lsslwq@mail.sysu.edu.cn
纸质出版日期:2022-09-25,
网络出版日期:2022-01-21,
收稿日期:2021-06-19,
录用日期:2021-07-31
扫 描 看 全 文
苗益博,杨傲,邢成广等.联合接种植物生长益生菌提高杂交象草在铜污染土壤修复中的效率[J].中山大学学报(自然科学版),2022,61(05):50-61.
MIAO Yibo,YANG Ao,XING Chengguang,et al.Co-inoculation of plant growth-promoting rhizobacteria enhance phytoremediation efficiency of hybrid Pennisetum in Cu contaminated soils[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(05):50-61.
苗益博,杨傲,邢成广等.联合接种植物生长益生菌提高杂交象草在铜污染土壤修复中的效率[J].中山大学学报(自然科学版),2022,61(05):50-61. DOI: 10.13471/j.cnki.acta.snus.2021E029.
MIAO Yibo,YANG Ao,XING Chengguang,et al.Co-inoculation of plant growth-promoting rhizobacteria enhance phytoremediation efficiency of hybrid Pennisetum in Cu contaminated soils[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(05):50-61. DOI: 10.13471/j.cnki.acta.snus.2021E029.
植物生长益生菌(PGPR,plant growth-promoting rhizobacteria)能提高植物修复的效率,虽然有研究显示联合接种可进一步提高植物修复效率,但目前人们仍大多关注于单菌株的促生作用,对于联合接种的作用和机理的研究仍有待进一步深入。我们将1~3种具有固氮能力或产1-氨基环丙烷-1-羧酸脱氨酶能力的耐铜PGPR菌株接种于杂交象草(
Pennisetum americanum
×
P. purpureum
)的种子上,研究在不同铜含量及不同土壤条件下其对杂交象草种子萌发、幼苗生长及铜吸收的影响,探讨联合接种具有互补促生功能的菌株能否进一步提高以及如何提高植物修复的效率。结果显示,植物生长益生菌能有效促进种子萌发及幼苗生长,且在高铜的条件下促生效果更好。杂交象草对铜耐受性强,其植物体对铜元素由根向茎迁移的系数低于0.1,接种PGPR进一步降低迁移系数。联合接种进一步增强了PGPR对植物地下部分生长的促进作用和对迁移效率的抑制作用。我们的研究显示联合接种2~3种具有互补植物生长促进性状的 PGPR菌株可提高杂交象草在植物修复中的效率,而杂交象草可作为铜尾矿植物修复的候选物种,具有较高的潜在应用价值。
Plant growth-promoting rhizobacteria (PGPR) can promote the efficiency of phytoremediation, but most studies have concerned on single PGPR strain and knowledge of the effects of co-inoculating multiple strains is still lacking. This study explored whether, and if so how, consortia of PGPR with complementary traits can increase phytoremediation efficiency. Hybrid
Pennisetum
(
Pennisetum americanum
×
P. purpureum
) seeds were inoculated with 1-3 Cu tolerant PGPR strains with N
2
-fixing or 1-aminocyclopropane-1-carboxylate deaminase-producing ability, and the treatments’ effects on seed germination, seedling growth and Cu uptake were assessed in a range of conditions. Our results showed that the PGPR strains promoted both seed germination and seedling growth, and the effects were stronger under the high-Cu conditions. Hybrid
Pennisetum
is quite tolerant to Cu and its root-to-shoot translocation factor of Cu is lower than 0.1. PGPR inoculation further decreased the translocation factor. Co-inoculation of multiple strains enhanced both the stimulation effects on plant growth and the inhibition effects on translocation factor. Our results suggest that co-inoculation of 2-3 PGPR strains with complementary plant growth promoting traits can enhance the phytoremediation efficiency of hybrid
Pennisetum
, and hybrid
Pennisetum
is an excellent candidate plant for phytostabilization of Cu mine tailings.
重金属尾矿微生物辅助植物修复联合接种杂交象草(Pennisetum americanum×P.purpureum)
heavy metalsmine tailingsmicrobe-assisted phytoremediationco-inoculationhybrid Pennisetum (Pennisetum americanum × P. purpureum)
MOREIRA H, PEREIRA S I A, MARQUES A P G C, et al. Selection of metal resistant plant growth promoting rhizobacteria for the growth and metal accumulation of energy maize in a mine soil—Effect of the inoculum size[J]. Geoderma, 2016, 278: 1-11.
WANG L, JI B, HU Y, et al. A review on in situ phytoremediation of mine tailings[J]. Chemosphere, 2017, 184: 594-600.
ALI H, KHAN E, SAJAD M A. Phytoremediation of heavy metals—Concepts and applications[J]. Chemosphere, 2013, 91: 869-881.
PADMAVATHIAMMA P K, LI L Y. Phytoremediation technology: Hyperaccumulation metals in plants[J]. Water Air Soil Pollut, 2007, 184: 105-126.
FERNÁNDEZ Y T, DIAZ O, ACUÑA E, et al. Phytostabilization of arsenic in soils with plants of the genus Atriplex established in situ in the Atacama Desert[J]. Environ Monit Assess, 2016, 188: 235.
de BASHAN L E, HERNANDEZ J P, BASHAN Y, et al. Bacillus pumilus ES4: Candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings[J]. Environ Exp Bot, 2010, 69: 343-352.
SOUSSOU S, BRUNEL B, PERVENT M,et al. Rhizobacterial Pseudomonas spp. strains harbouring acdS gene could enhance metallicolous legume modulation in Zn/Pb/Cd mine tailings[J]. Water Air Soil Pollut, 2017, 228: 142.
ETESAMI H, MAHESHWARI D K. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects[J]. Ecotox Environ Safe, 2018, 156: 225-246.
KUMAR A, PATEL J S, MEENA V S, et al. Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture[J]. Biocatal Agr Biotech, 2019, 20: 101271.
REN X M, GUO S J, TIAN W, et al. Effects of plant growth-promoting bacteria (PGPB) inoculation on the growth, antioxidant activity, Cu uptake, and bacterial community structure of rape (Brassica napus L.) grown in Cu-contaminated agricultural soil[J]. Front Microbiol, 2019, 10: 1455.
GLICK B R. Using soil bacteria to facilitate phytoremediation[J]. Biotechnol Adv, 2010, 28: 367-374.
KUMAR V, SINGH S, SINGH J, et al. Potential of plant growth promoting traits by bacteria isolated from heavy metal contaminated soils[J]. Bull Environ Contam Toxicol, 2015, 94: 807-814.
FATNASSI IC, CHIBOUB M, SAADANI O, et al. Phytostabilization of moderate copper contaminated soils using co-inoculation of Vicia faba with plant growth promoting bacteria[J]. J Basic Microbiol, 2015, 55: 303-311.
MAHESHWARI D K, DUBEY R C, AGARWAL M, et al. Carrier based formulations of biocoenotic consortia of disease suppressive Pseudomonas aeruginosa KRP1 and Bacillus licheniformis KRB1[J]. Ecol Eng, 2015, 81: 272-277.
LIU W Q, YANG C, SHI S, et al. Effects of plant growth-promoting bacteria isolated from copper tailings on plants in sterilized and non-sterilized tailings[J]. Chemosphere, 2014, 97: 47-53.
YAHAGHI Z, SHIRVANI M, NOURBAKHSH F, et al. Isolation and characterization of Pb-solubilizing bacteria and their effects on Pb uptake by Brassica juncea: Implications for microbe-assisted phytoremediation[J]. J Microbiol Biotechnol, 2018, 28: 1156-1167.
FESTA R A, THIELE D J. Copper: An essential metal in biology[J]. Curr Biol, 2011, 21: R877-R883.
AN Y J. Assessment of comparative toxicities of lead and copper using plant assay[J]. Chemosphere, 2006, 62: 1359-1365.
SONG Y S, SHU W S, WANG A D, et al. Characters of soil algae during primary succession on copper mine dumps[J]. J Soils Sediments, 2014, 14: 577-583.
STRASSER B J, STRASSER R J. Measuring fast fluorescence transients to address environmental questions: The JIP test // MATHIS P, ed. Photosynthesis: From Light to Biosphere[M].Dordrecht, NL: Kluwer Academic Publisher, 1995: 977-980.
TROLL W, LINDSLEY J. A photometric method for the determination of proline[J]. J Biol Chem, 1955, 215: 655-660.
WANG X K. Principles and techniques of plant physiological biochemical experiment [M]. 2nd ed. Beijing: Higher Education Press, 2006.(in Chinese).
MIRANSARI M, SMITH D L. Plant hormones and seed germination[J]. Environ Exp Bot, 2014, 99: 110-121.
LAVAKUSH, YADAV J, VERMA JP, et al. Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa)[J]. Ecol Eng, 2014, 62: 123-128.
KHALID A, ARSHAD M, ZAHIR Z A. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat[J]. J Appl Microbiol, 2004, 96: 473-480.
ISLAM F, YASMEEN T, ARIF M S, et al. Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants[J]. Plant Physiol Bioch, 2016, 108: 456-467.
MITTAL S, KUMARI N, SHARMA V. Differential response of salt stress on Brassica juncea: Photosynthetic performance, pigment, proline, D1 and antioxidant enzymes[J]. Plant Physiol Biochem, 2012, 54: 17-26.
JU W L, LIU L, JIN X L, et al. Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils[J]. Chemosphere, 2020, 254: 126724.
PAN F S, MENG Q, LUO S, et al. Enhanced Cd extraction of oilseed rape (Brassica napus) by plant growth-promoting bacteria isolated from Cd hyperaccumulator Sedum alfredii Hance[J]. Int J Phytoremediat, 2017, 19: 281-289.
MENDOZA-HERNÁNDEZA J C, VÁZQUEZ-DELGADOA O R, CASTILLO-MORALES M, et al. Phytoremediation of mine tailings by Brassica juncea inoculated with plant growth-promoting bacteria[J]. Microbiol Res, 2019, 228: 126308.
PAPAIOANNOU D, KALAVROUZIOTIS I K, KOUKOULAKIS P H, et al. Interrelationships of metal transfer factor under wastewater reuse and soil pollution[J].J Environ Manage,2018,216: 328-336.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构