甘肃农业大学林学院,甘肃 兰州730070
鲁松松(1986年生),男;研究方向:野生动物生理生态及分子生态;E-mail: luss13@lzu.edu.cn
纸质出版日期:2022-07-25,
网络出版日期:2021-12-13,
收稿日期:2021-05-18,
录用日期:2021-08-23
扫 描 看 全 文
鲁松松,赵夏下,祁重霞等.高原鼢鼠血红蛋白基因鉴定、表达及其分子进化分析[J].中山大学学报(自然科学版),2022,61(04):49-59.
LU Songsong,ZHAO Xiaxia,QI Chongxia,et al.Hemoglobin gene identification, expression and molecular evolution analysis in Eospalax baileyi[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(04):49-59.
鲁松松,赵夏下,祁重霞等.高原鼢鼠血红蛋白基因鉴定、表达及其分子进化分析[J].中山大学学报(自然科学版),2022,61(04):49-59. DOI: 10.13471/j.cnki.acta.snus.2021E018.
LU Songsong,ZHAO Xiaxia,QI Chongxia,et al.Hemoglobin gene identification, expression and molecular evolution analysis in Eospalax baileyi[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(04):49-59. DOI: 10.13471/j.cnki.acta.snus.2021E018.
结合比较基因组、转录物组、分子进化和蛋白质物理化学性质及结构等分析方法,探讨高原鼢鼠
Eospalax baileyi
血红蛋白 (Hb,hemoglobin) 的
α
、
β
基因簇结构、基因表达模式及正选择位点对蛋白质结构的潜在影响等,旨在研究高原鼢鼠Hb氧亲和力升高的机理。结果表明:高原鼢鼠的
α
和
β
基因簇分别含有3个
α
(5ʹ-
α
E
,
α
A
,
α
Q
-3ʹ)和7个
β
(5ʹ-
ε
,
γ
,
γ1
,
γ
,
σ
(pesudo),
β1
,
β2
(pesudo)-3ʹ)基因;成体高原鼢鼠除表达常规的成体
Hb
基因
α
A
和
β1
外,还表达了胚胎
α
E
基因;Hb β1亚基血红素“口袋”开口处12个氨基酸残基的突变,使得该区域稳定性和亲水性增强,口袋 (活性中心) 体积也稍有增加。高原鼢鼠较高Hb氧亲和力的主要原因可能是其胚胎型
α
E
基因在成体中的表达,同时α
E
和β1亚基稳定性增加,有利于高氧亲和力的α
E
型Hb(α
E
β1)
2
积累到较高的浓度。本文首次发现
α
E
基因在成体哺乳动物中被高表达,这可能是极端低氧环境诱导的,也可能是
α
E
基因调控区域遗传基础的改变引起的,具体机制尚待进一步验证。
The study was aimed to reveal the mechanism of elevated hemoglobin oxygen affinity of Plateau zokor (
Eospalax baileyi
).By using a comparative genomic and transcriptomic analysis of the
α
and
β
gene clusters in the plateau zokor to characterize the changes in the size and membership composition of the
α
and
β
gene families within the Spalacidae, the study evaluated the evolutionary changes in the developmental regulation of gene expression of the plateau zokor and explored the potential impact of positive selection sites on protein structure and function. The results showed that the plateau zokor α and β gene clusters contain three
α
(5ʹ-
α
E
,
α
A
,
α
Q
-3ʹ) and seven
β
(5ʹ-
ε
,
γ
,
γ1
,
γ2
,
σ
(pesudo),
β1
,
β2
(pesudo)-3ʹ) genes respectively;in addition to the conventional adult expression genes
α
A
and
β1
, adult plateau zokor expressed an extra embryonic
α
E
gene;the twelve amino acid mutations on heme “pocket” opening of β1 subunit might be able to increase the stability and hydrophilicity of the region, and slightly increases the volume of the pocket (active center). The results also suggested that the abnormally high oxygen affinity of plateau zokor might result from the expression of embryonic
α
E
gene in adults;the increased stability of α
E
and β1 subunits and the decrease of α
A
subunit stability may lead to accumulation of α
E
type Hb (α
E
β1)
2
to a concentration similar to α
A
type (α
A
β1)
2
. It was the first report that the
α
E
gene is highly expressed in adult mammals, this phenomenon may be induced by extreme low oxygen environment, or it may be caused by changes in the genetic basis of the
α
E
gene regulatory region. The specific mechanism needs further study.
高原鼢鼠Eospalax baileyi血红蛋白氧亲和力基因表达
Eospalax baileyihemoglobinoxygen affinitygene expression
STOR Z, JAY F. Hemoglobin-oxygen affinity in high-altitude vertebrates: Is there evidence for an adaptive trend? [J] Journal of Experimental Biology, 2016, 219(20): 3190-3203.
JENSEN B, STORZ J F, FAGO A. Bohr effect and temperature sensitivity of hemoglobins from highland and lowland deer mice [J].Comparative Biochemistry and Physiology A—Molecular & Integrative Physiology, 2016, 195: 10-14.
CHANDRASEKHAR N, HOFFMANN F G, LANIER H C, et al. Intraspecific polymorphism, interspecific divergence, and the origins of function-altering mutations in deer mouse hemoglobin [J]. Molecular Biology and Evolution, 2015, 32(4): 978-997.
OSTOJIC H, CIFUENTES V, MONGE C. Hemoglobin affinity in Andean rodents [J]. Biological Research, 2002, 35(1): 27.
STORZ J F, SCOTT G R, CHEVIRON Z A. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates [J]. The Journal of Experimental Biology, 2010, 213(24): 4125-4136.
ZENG J, WANG Z, SHI Z. Metabolic characteristics and some physiological parameters of mole rat (Myospalax baileyi) in alpine area [J]. Acta Biologica Plateau Sinica, 1984, 3: 163-171.
齐新章, 王晓君, 朱世海, 等. 高原鼢鼠和高原鼠兔心脏对低氧环境的适应 [J]. 生理学报, 2008, 60(3): 348-354.
WEI D B, WEI L, ZHANG J M, et al. Blood-gas properties of plateau zokor (Myospalax baileyi) [J]. Comparative Biochemistry and Physiology A—Molecular & Integrative Physiology, 2006, 145: 372-375.
王晓君, 魏登邦, 魏莲, 等. 高原鼢鼠和高原鼠兔肺细叶的结构特征 [J]. 动物学报, 2008, 54(3): 531-539.
PU P, LU S, NIU Z, et al. Oxygenation properties and underlying molecular mechanisms of hemoglobins in plateau zokor (Eospalax baileyi) [J]. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 2019, 317(5): R696-R708.
WEBER R E, JARVIS J U M, FAGO A, et al. O2 binding and CO2 sensitivity in haemoglobins of subterranean African mole rats [J]. Journal of Experimental Biology, 2017, 220(21): 3939-3948.
STORZ J F, RUNCK A M, MORIYAMA H, et al. Genetic differences in hemoglobin function between highland and lowland deer mice [J]. Journal of Experimental Biology, 2010, 213(15): 2565-2574.
STORZ J, WEBER R, FAGO A. Oxygenation properties and oxidation rates of mouse hemoglobins that differ in reactive cysteine content [J]. Comparative Biochemistry and Physiology A—Molecular & Integrative Physiology, 2011, 161: 265-270.
BRITTAIN T. Molecular aspects of embryonic hemoglobin function [J]. Molecular Aspects of Medicine, 2002, 23(4): 293-342.
马丽英, 蒲鹏, 陈强, 等. 地山雀血红蛋白高原低氧适应的分子机制 [J]. 中国生物化学与分子生物学报, 2021, 37(1): 88-101.
NATARAJAN C, HOFFMANN F, WEBER R, et al. Predictable convergence in hemoglobin function has unpredictable molecular underpinnings [J]. Science, 2016, 354: 336-339.
CAMACHO C, COULOURIS G, AVAGYAN V, et al. BLAST+: Architecture and applications [J]. BMC Bioinformatics, 2009, 10(1): 421.
GRABHERR M G, HAAS B J, YASSOUR M, et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data [J]. Nature Biotechnology, 2013, 29: 644.
EDGAR R C. MUSCLE: multiple sequence alignment with high accuracy and high throughput [J]. Nucleic Acids Research, 2004, 32(5): 1792-1797.
HUELSENBECK J P, RONQUIST F. MRBAYES: Bayesian inference of phylogenetic trees [J]. Bioinformatics, 2001, 17(8): 754-755.
YANG Z. PAML 4: Phylogenetic analysis by maximum likelihood [J]. Molecular Biology and Evolution, 2007, 24(8): 1586-1591.
LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with Bowtie 2 [J]. Nature Methods, 2012, 9(4): 357-359.
WEBB B, SALI A. Comparative protein structure modeling using Modeller [J]. Current Protocols in Protein Science, 2016, 86(1): 2.9.1-2.9.37.
HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics [J]. Journal of Molecular Graphics, 1996, 14(1): 33-38.
HOFFMANN F G, STORZ J F, GORR T A, et al. Lineage-specific patterns of functional diversification in the alpha- and beta-globin gene families of tetrapod vertebrates [J]. Molecular Biology and Evolution, 2010, 27(5): 1126-1138.
HOFFMANN F G, OPAZO J C, STORZ J F. New genes originated via multiple recombinational pathways in the β-globin gene family of rodents [J]. Molecular Biology and Evolution, 2008, 25(12): 2589.
OPAZO J C, HOFFMANN F G, STORZ J F. Genomic evidence for independent origins of β-like globin genes in monotremes and therian mammals [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(5): 1590-1595.
AGUILETA G, BIELAWSKI J P, YANG Z. Gene conversion and functional divergence in the β-globin gene family [J]. Journal of Molecular Evolution, 2004, 59(2): 177-189.
OPAZO J C, HOFFMANN F G, NATARAJAN C, et al. Gene turnover in the avian globin gene families and evolutionary changes in hemoglobin isoform expression [J]. Molecular Biology and Evolution, 2014, 32(4):871-887.
STORZ J F, HOFFMANN F G, OPAZO J C, et al. Adaptive functional divergence among triplicated alpha-globin genes in rodents [J]. Genetics, 2008, 178(3):1623-1638.
蒲鹏. 高原鼢鼠血红蛋白氧合特性及其分子机制 [D]. 兰州:兰州大学, 2018.
0
浏览量
1
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构