1.中山大学生命科学学院,广东 广州 510275
2.中山大学深圳研究院,广东 深圳 518057
3.广东内伶仃福田国家级自然保护区管理局,广东 深圳 518040
乔雪婷(1996年生),女;研究方向:景观生态学;E-mail:qiaoxt@mail2.sysu.edu.cn
余世孝(1962年生),男;研究方向:生物多样性、景观生态学;E-mail:ssysx@mail.sysu.edu.cn
纸质出版日期:2022-07-25,
网络出版日期:2021-07-14,
收稿日期:2021-03-22,
录用日期:2021-05-06
扫 描 看 全 文
乔雪婷,张娟娟,李文斌等.基于无人机遥感技术的广东内伶仃岛植被类型划分与植被图[J].中山大学学报(自然科学版),2022,61(04):22-30.
QIAO Xueting,ZHANG Juanjuan,LI Wenbin,et al.Vegetation classification and vegetation map of Neilingding Island in Guangdong Province based on UAV remote sensing technology[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(04):22-30.
乔雪婷,张娟娟,李文斌等.基于无人机遥感技术的广东内伶仃岛植被类型划分与植被图[J].中山大学学报(自然科学版),2022,61(04):22-30. DOI: 10.13471/j.cnki.acta.snus.2021E014.
QIAO Xueting,ZHANG Juanjuan,LI Wenbin,et al.Vegetation classification and vegetation map of Neilingding Island in Guangdong Province based on UAV remote sensing technology[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(04):22-30. DOI: 10.13471/j.cnki.acta.snus.2021E014.
内伶仃岛植被,由于自然保护区的建立而得以迅速恢复。对其植被现状进行类型划分并绘制高精度植被图,对于保护区的科学管理具有重要的指导意义。本研究基于无人机技术所获取的全岛遥感影像,结合1个15 hm
2
大样地和113个100 m
2
样地以及全岛踏查的317个样点的实地调查,对内伶仃岛的植被类型进行了划分,并绘制数字植被图,主要结果如下:(1)内伶仃岛主要的自然植被类型包括南亚热带常绿阔叶林、南亚热带针阔叶混交林、南亚热带常绿灌丛、南亚热带竹林,并伴有滨海砂生灌草丛、红树林分布;(2)南亚热带常绿阔叶林为该区域的气候顶极群落类型,占全岛植被分布面积的46.97%,居绝对优势地位,群落中优势物种破布叶
Microcos paniculata
和血桐
Macaranga tanarius
等均为内伶仃岛重点保护对象猕猴
Macaca mulatta
的主要食源植物;红树林退化明显,仅在东湾咀东侧和黑沙湾东侧海岸边有小面积分布,主要树种为蜡烛果
Aegiceras corniculatum
;(3)人工植被类型主要有台湾相思
Acacia confusa
、血桐、木麻黄
Casuarina equisetifolia
、幌伞枫
Heteropanax fragrans
、椰子
Cocos nucifera
和海滨木槿
Hibiscus hamabo
,以及荔枝
Litchi chinensis
和龙眼
Dimocarpus longan
等经济果林类型分布,其中台湾相思林为最主要人工植被,植被分布面积达29.80%,也是猕猴的最主要食源植物之一;(4)微甘菊
Mikania micrantha
和刺果藤
Byttneria grandifolia
分别为该岛屿最主要的外来入侵植物和本地有害植物,是除猕猴以外,影响岛内植被变化的重要胁迫因子,虽长期进行人工及化学防除,仍蔓延严重。通过无人机遥感影像技术和地面调查手段对内伶仃岛全岛植被进行精准复核,二者相互补充,为岛屿植被调查与植被制图提供了新的手段和思路,运用地理信息系统绘制的数字化植被图,将为保护区提出合理、科学的植被保护策略和进行信息化管理提供重要依据,有利于维持内伶仃岛生态系统的稳定发展。
The establishment of the Neilingding Island Nature Reserve has gradually restored the vegetation on the island. In this paper, the vegetation of Neilingding Island, which belongs to Guangdong Neilingding Island-Futian National Nature Reserve, was taken as the research object. Based on the remote sensing images obtained by UAV technology, combined with the field investigation, vegetation types on Neilingding Island were classified and the vegetation map was drawn. Four main results were obtained: (1) The main natural vegetation types include the subtropical evergreen broad-leaved forest, the subtropical coniferous and broad-leaved mixed forest, the subtropical evergreen shrub, the subtropical bamboo forest. In addition, the coastal sand shrub, mangrove also distribute in this island. (2) The subtropical evergreen broad-leaved forest is the climatic climax in this region, accounting for 46.97% of the vegetation distribution area, and occupies the absolute dominant position.
Microcos paniculata
and
Macaranga tanarius
, the dominant species in the community, are the main food source plants for
Macaca mulatta
, the main protected species on Neilingding Island. In mangrove, only a small area of
Aegiceras corniculatum
was found on the east Dongwanzui and the east coast of Heishawan. (3) The main types of artificial vegetation are:
Acacia confusa, Macaranga tanarius, Cathuarina equisetifolia, Heteropanax fragrans, Cocos nucifera, Hibiscus hamabo, Litchi chinensis
and
Dimocarpus longan,Acacia confusa
is the most important artificial vegetation. It accounts for 29.80% of the vegetation distribution area, and is also one of the main food sources of
Macaca mulatta
. (4)
Mikania micrantha
and
Byttneria grandifolia
are the main invasive plants on Neilingding Island. They result in a serious vegetation degradation. Despite manual removal and chemical control, they are still wreak havoc on this island every year. UAV remote sensing image provides new means and ideas for island vegetation survey and mapping, and the digital vegetation map drawn by GIS can provide important scientific basis for rational information management of the vegetation in the reserve.
内伶仃岛无人机遥感影像植被分类植被型自然植被人工植被植被制图
Neilingding IslandUAV remote sensing imagevegetation classificationvegetation typesnatural vegetationartificial vegetationvegetation mapping
KIER G,KREFT H,LEE T M,et al. A global assessment of endemism and species richness across island and mainland regions. Proceedings of the National[J]. Academy of Sciences of the United States of America,2009,106(23) : 9322-9327.
GARNIER E,CORTEZ J,BILL G,et al. Plant functional markers capture ecosystem properties during secondary succession[J]. Ecology,2004,85(9) : 2630-2637.
李真,李瑜,昝启杰,等. 深圳福田与香港米埔红树林群落分布与景观格局比较[J]. 中山大学学报(自然科学版),2017,56(5):12-19.
LI Z,ZAN Q,YANG Q,et al. Remote estimation of mangrove aboveground carbon stock at the species level using a low-cost Unmanned Aerial Vehicle system[J]. Remote Sensing,2019,11(9):1018.
ZHU D,HUI D,WANG M,et al. Light and competition alter leaf stoichiometry of introduced species and native mangrove species[J]. Science of the Total Environment,2020,738:140301.
吴海轮,周琳,徐华林,等. 粤港澳大湾区红树林湿地鸟类承载力评估与提升对策——以深圳湾福田红树林为例[J]. 北京大学学报(自然科学版),2020,56 (6): 1056-1064.
邱致刚,林绅辉,沈小雪,等. 基于神经网络的福田红树林生态系统健康评估[J]. 植物学研究,2019,8(6):500-508.
黄东光,邓太阳,周先叶,等. 广东内伶仃岛薇甘菊危害与生态因子的关联度分析[J]. 生态科学,2008,27(3):143-147.
GUO Q H,SU Y J,HU T Y,et al. An integrated UAV-borne lidar system for 3D habitat mapping in three forest ecosystems across China[J]. International Journal of Remote Sensing,2017,38(8/9/10): 2954-2972.
杨勇强,王振锡,师玉霞,等. 基于无人机遥感的天山云杉林密度估测研究[J]. 新疆农业大学学报,2019,42(3): 194-201.
王雅佩,王振锡,李擎,等. 基于无人机影像的天山云杉林伐后更新地林分密度估测研究[J]. 中南林业科技大学学报,2020,40(5):57-66.
杨勇强,王振锡,师玉霞,等. 基于无人机影像的天山云杉林更新类别划分及提取[J]. 西北林学院报,2020,35(6): 185-193.
许祝华,张彦彦,杨晖,等. 海域无人机遥感监测三维立体监管系统的建设与研究[J]. 海洋开发与管理,2013,30(6):16-18.
金伟,葛宏立,杜华强,等. 无人机遥感发展与应用概况[J]. 遥感信息,2009(1):88-92.
李广静. 无人机低空遥感影像的应用及精度实证研究[D]. 郑州: 华北水利水电大学,2018.
CAO J,LENG W,LIU K,et al. Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models[J]. Remote Sensing,2018,10(1):89.
戴鹏钦,丁丽霞,刘丽娟,等. 基于FCN的无人机可见光影像树种分类[J]. 激光与光电子学进展,2020,57(10):36-45.
覃朝锋,李贞,董汉飞.珠江口内伶仃岛植被[J]. 生态科学,1990(2):23-34.
崔大方,廖文波,昝启杰,等.广东内伶仃岛国家级自然保护区的植物资源[J].华南农业大学学报,2000,21(3) : 48-52.
蓝崇钰,廖文波,王勇军. 广东内伶仃岛的生物资源及自然保护规划[J].植物资源与环境学报,2002,11(1) : 47-52.
方精云,郭柯,王国宏,等. 《中国植被志》的植被分类系统、植被类型划分及编排体系[J]. 植物生态学报,2020,44(2):96-110.
余世孝,李勇,王永繁,等. 黑石顶自然保护区植被分类系统与数字植被图Ⅰ.植被型与群系的分布[J]. 中山大学学报(自然科学版),2000,39(2):61-66.
昝启杰,廖文波,陈继敏,等.广东内伶仃岛植物区系的研究[J].西北植物学报,2001,21(3): 507-519.
中国植物委员会. 中国植被[M]. 北京:科学出版社,1980.
广东省农业区划委员会, 中国科学院华南植物研究所. 广东省的植被和植被区划[M]. 北京: 学术书刊出版社,1989.
廖文波,昝启杰,崔大方,等.内伶仃岛主要植被及群落类型的特征和分布[J]. 生态科学,1999,18(4):6-19.
李勇,余世孝,练琚蕍,等. 广东黑石顶自然保护区植被分类系统与数字植被图——Ⅱ.群丛的分布[J]. 热带亚热带植物学报,2000(2):147-156.
郭柯,方精云,王国宏,等. 中国植被分类系统修订方案[J]. 植物生态学报,2020,44(2):111-127.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构