1.中山大学地理科学与规划学院,广东 广州 510006
2.中山大学环境科学与工程学院,广东 广州 510006
王蝶(1996年生),女;研究方向:自然地理;E-mail:wangd93@mail2.sysu.edu.cn
江涛(1965年生),女;研究方向:水资源与环境;E-mail:eesjt@mail.sysu.edu.cn
纸质出版日期:2023-01-25,
网络出版日期:2022-05-31,
收稿日期:2021-12-27,
录用日期:2022-01-20
扫 描 看 全 文
王蝶,江涛,禤映雪等.粤北鹿颈水库小流域土壤有机碳分布特征及其影响因素[J].中山大学学报(自然科学版),2023,62(01):75-85.
WANG Die,JIANG Tao,XUAN Yingxue,et al.Distribution characteristics and influencing factors of soil organic carbon in the small watershed of Lujing reservoir,northern Guangdong[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(01):75-85.
王蝶,江涛,禤映雪等.粤北鹿颈水库小流域土壤有机碳分布特征及其影响因素[J].中山大学学报(自然科学版),2023,62(01):75-85. DOI: 10.13471/j.cnki.acta.snus.2021D102.
WANG Die,JIANG Tao,XUAN Yingxue,et al.Distribution characteristics and influencing factors of soil organic carbon in the small watershed of Lujing reservoir,northern Guangdong[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(01):75-85. DOI: 10.13471/j.cnki.acta.snus.2021D102.
土壤有机碳是土壤养分和质量评估的重要指标之一,在小流域尺度上,研究土壤有机碳(SOC)含量水平和垂向的分布特征及其主要影响因素对土地利用的科学管理具有重要意义。以粤北英德市鹿颈水库小流域为研究对象,通过采集流域内茶园(英红12号和英红9号)、桉树林、马尾松林和次生林等4种主要土地利用类型的土壤,测定土壤的粒度组成、土壤容重(BD)、pH、电导率(EC)、SOC、颗粒有机碳(POC)、全氮(TN)、碳氮比(C/N),以及土壤的δ
13
C和δ
15
N,结合采样点的坡度、坡向以及凋落物的质量和厚度,采用冗余分析研究SOC和POC含量的主要影响因素。结果表明:1)鹿颈水库流域土壤pH在4.2~5.8之间,出现土壤酸化现象,土壤质地均为粉壤土,不同土地利用类型之间土壤pH、EC、TN含量、C/N及δ
13
C、δ
15
N差异显著(
P
<
0.05);2)在0~40 cm的土壤深度,SOC和POC含量均随深度的增加而降低,变化范围分别为0.5%~1.3%和1.2~3.9 g/kg,表现出明显的表聚性,但不同土地利用类型之间SOC和POC含量没有明显差异;3)本研究所选取的土壤因子、地形因子和环境因子可以解释SOC和POC含量78.1%的变异,其中土壤因子中的C/N、TN含量、pH、土层深度和BD是影响水库流域SOC和POC含量变化的主要因素,SOC和POC含量与C/N、TN含量呈显著正相关,而与土壤pH、土层深度和BD呈显著负相关。
Soil organic carbon is one of the important indicators for soil nutrient and quality assessment. At the small watershed scale
studying the horizontal and vertical distribution characteristics of soil organic carbon and its main influencing factors is of great significance to the scientific management of landuse. Taking the small watershed of Lujing Reservoir in Yingde city
northern Guangdong Province as the research object
collecting soils of four main landuse types including
Camellia sinensis
gardens (Yinghong12 (Cs12) and Yinghong9 (Cs9))
Eucalyptus robusta
forests (Er)
Pinus massoniana
forests (Pm) and secondary forests (SF) in the watershed. Soil particle size composition
pH
electrical conductivity (EC)
soil organic carbon (SOC)
particulate organic carbon (POC)
total nitrogen (TN)
carbon to nitrogen ratio (C/N)
and soil carbon and nitrogen isotope values(δ
13
C
δ
15
N) were measured
combined with the slope and aspect of the sampling site and the quality and thickness of litter
redundant analysis was conducted to explore the main influencing factors of SOC and POC content. The results show that: 1) The soil pH in the Lujing Reservoir watershed is between 4.2 and 5.8
and soil acidification occurs. The soil texture is silt loamy. The difference in soil pH
EC
TN
T/N
and δ
13
C
δ
15
N between different landuse types is significant (
P
<
0.05); 2) In 0~40 cm depth
the SOC and POC content decrease with the increase of the depth
and the variation ranges are 0.5%~1.3% and 1.2~3.9 g/kg
respectively
showing obvious surface aggregation. However
there is no significant difference in SOC and POC content between the different landuse types selected; 3) The soil
topographic and environmental factors selected in this study can explain 78.1% of the variation of SOC and POC. Among them
C/N
TN
pH
soil depth and bulk density(BD) are the main factors affecting the changes in SOC and POC content in this small watershed. SOC and POC were significantly positively correlated with C/N and TN
while significantly negatively correlated with soil pH
soil depth
and BD.
土壤有机碳土地利用类型碳氮同位素冗余分析鹿颈水库流域
soil organic carbonlanduse typescarbon and nitrogen isotoperedundancy analysisLujing reservoir watershed
BONGIORNO G, BÜNEMANN E K, OGUEJIOFOR C U, et al. Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe[J]. Ecological Indicators, 2019, 99: 38-50.
RAMESH T, BOLAN N S, KIRKHAM M B, et al. Soil organic carbon dynamics:Impact of land use changes and management practices: A review[M]//SPARKS D L,ed.Advances in Agronomy. America: Elsevier Inc, 2019:1-107.
刘晓君, 高盼, 潘俊, 等. 红壤区植被恢复团聚体POC变化归因分析[J]. 水土保持学报, 2021, 35(2): 217-224+234.
孙文泰, 马明, 董铁, 等. 长期覆膜旱地苹果园表层土壤“隐性”退化下活性有机碳与酶活性差异[J]. 水土保持学报, 2021, 35(5): 272-279.
欧阳园丽, 吴小刚, 林小凡, 等. 九连山自然保护区土壤有机碳时空变异的耦合效应[J]. 森林与环境学报, 2020, 40(6): 561-568.
岑龙沛, 严友进, 戴全厚, 等. 喀斯特不同土地利用类型裂隙土壤有机碳及磷素赋存特征[J]. 生态学报, 2020, 40(21): 7567-7575.
张华渝, 王克勤, 宋娅丽, 等. 滇中尖山河小流域不同土地利用类型土壤活性有机碳分布特征[J]. 水土保持研究, 2019, 26(3): 16-21.
刘世梁, 安南南, 杨珏婕, 等. 澜沧江中游山地不同土地利用对土壤有机碳的影响及预测[J]. 应用生态学报, 2015, 26(4): 981-988.
王深华, 江军, 刘丰彩, 等. 中国成熟天然林土壤有机碳垂直分异特征[J]. 应用生态学报, 2021, 32(7): 2371-2377.
商泽安, 宋涵晴, 舒琪, 等. 海南岛甘什岭低地次生雨林土壤有机碳及影响因素[J]. 生态环境学报, 2021, 30(2): 297-304.
刘波, 陈林, 庞丹波, 等. 六盘山华北落叶松土壤有机碳沿海拔梯度的分布规律及其影响因素[J]. 生态学报, 2021, 41(17): 6773-6785.
常帅, 于红博, 曹聪明, 等. 锡林郭勒草原土壤有机碳分布特征及其影响因素[J]. 干旱区研究, 2021, 38(5): 1355-1366.
李理, 朱文博, 刘俊杰, 等. 宝天曼自然保护区土壤有机碳异质性及其影响因素[J]. 长江流域资源与环境, 2020, 29(3): 687-695.
杨玉盛, 谢锦升, 盛浩, 等. 中亚热带山区土地利用变化对土壤有机碳储量和质量的影响[J]. 地理学报, 2007, 11: 1123-1131.
林培松, 欧阳椿陶, 尚志海, 等. 粤东北山区不同土地利用类型红壤团聚体及其有机碳分布特征[J]. 热带地理, 2011, 31(4): 362-367.
黎艳明, 周毅, 陈会智. 粤北次生常绿阔叶林土壤有机碳分布特征研究[J]. 广东林业科技, 2011, 27(4): 6-11.
刘姝媛, 刘月秀, 叶金盛, 等. 广东省桉树人工林土壤有机碳密度及其影响因子[J]. 应用生态学报, 2010, 21(8): 1981-1985.
鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 22-163.
CAMBARDELLA C A, ELLIOTT E T. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56: 777-783.
陈淼, 刘顺, 许格希, 等. 土壤剖面碳氮稳定同位素自然丰度的垂直分布模式及其影响机制[J]. 应用生态学报, 2021, 32(6): 1919-1927.
邵方丽, 余新晓, 郑江坤, 等. 北京山区防护林优势树种分布与环境的关系[J]. 生态学报, 2012, 32(19): 6092-6099.
刘玉祯, 刘文亭, 冯斌, 等. 坡向和海拔对高寒山地草甸植被分布格局特征的影响[J]. 草地学报, 2021, 29(6):1166-1173.
PEIFFER J A, SPOR A, KOREN O, et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions[J]. Proceedings of the National Academy of Sciences, 2013, 110(16): 6548-6553.
付志蓝, 卢瑛. 粤北山区不同土地利用方式下土壤有机碳及其组分特征[J]. 热带作物学报, 2020, 41(3): 627-632.
徐侠, 陈月琴, 汪家社, 等. 武夷山不同海拔高度土壤活性有机碳变化[J]. 应用生态学报,2008,19(3): 539-544.
习丹, 旷远文. 城市化梯度上亚热带常绿阔叶林土壤有机碳及其组分特征[J]. 应用生态学报, 2018, 29(7): 2149-2155.
张瑶瑶, 冷若琳, 崔霞, 等. 甘南州高寒草地土壤氮磷空间分布特征[J]. 草业学报, 2018, 27(12): 12-21.
姜沛沛, 曹扬, 陈云明, 等. 不同林龄油松 (Pinus tabulaeformis)人工林植物、凋落物与土壤C、 N、 P化学计量特征[J].生态学报, 2016, 36(19): 6188-6197.
任玉连, 陆梅, 曹乾斌, 等. 南滚河国家级自然保护区典型植被类型土壤有机碳及全氮储量的空间分布特征[J]. 北京林业大学学报, 2019, 41(11): 104-115.
高君亮, 罗凤敏, 高永, 等. 农牧交错带不同土地利用类型土壤碳氮磷生态化学计量特征[J]. 生态学报, 2019, 39(15): 5594-5602.
TRUU M, JUHANSON J, TRUU J. Microbial biomass, activity and community composition in constructed wetlands[J]. Science of the Total Environment, 2009, 407(13): 3958-397.
李亚翠, 季宏兵, 张涛, 等. 石林地区典型土壤剖面有机碳、氮含量分布特征研究[J]. 地球与环境, 2018, 46(5): 437-443.
HAN G, TANG Y, LIU M, et al. Carbon-nitrogen isotope coupling of soil organic matter in a Karst region under land use change, southwest China[J]. Agriculture, Ecosystems & Environment, 2020, 301:107027.
RODRÍGUEZ A, DURÁN J, COVELO F, et al. Spatial pattern and variability in soil N and P availability under the influence of two dominant species in a pine forest[J]. Plant Soil, 2011, 345: 211-221.
尤海舟, 毕君, 王超, 等. 河北小五台山不同海拔白桦林土壤有机碳密度分布特征及影响因素[J]. 生态环境学报, 2018, 27(3): 432-437.
孟苗婧, 张金池, 郭晓平, 等. 海拔变化对黄山松阔叶混交林土壤有机碳组分的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(6): 106-112.
CHENG L, LEAVITT S W, KIMBALL B A, et al. Dynamics of labile and recalcitrant soil carbon pools in a sorghum free-air CO2 enrichment (face) agroecosystem[J]. Soil Biology and Biochemistry, 2007, 39(9): 2250-2263.
吴玥, 赵盼盼, 林开淼, 等. 戴云山黄山松林土壤碳组分的海拔变化特征及影响因素[J]. 生态学报, 2020, 40(16): 5761-5770.
聂阳意, 王海华, 李晓杰, 等. 武夷山低海拔和高海拔森林土壤有机碳的矿化特征[J]. 应用生态学报, 2018, 29(3): 748-756.
向慧敏, 温达志, 张玲玲, 等. 鼎湖山森林土壤活性碳及惰性碳沿海拔梯度的变化[J]. 生态学报, 2015, 35(18): 6089-6099.
EDWARDS K R, PICEK T, ČÍŽKOVÁ H, et al. Nutrient addition effects on carbon fluxes in wet grasslands with either organic or mineral soil[J]. Wetlands, 2015, 35: 55–68.
徐薇薇, 乔木.干旱区土壤有机碳含量与土壤理化性质相关分析[J].中国沙漠,2014,34(6):1558-1561.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构